Inter-M PD-6359 блок контроля и распределения питания
К блоку PD-6359 подключаются основной и резервный источник питания. В качестве основного источника используется сеть 220 В 50 Гц, а резервное питание осуществляется от аккумуляторных батарей напряжением 24 В. Устройство обеспечивает контроль электропитания всей системы. В случае аварии основного источника блок автоматически и без задержки переключится на резервный. Для питания различных устройств используются или розетки 220 В с заземлением, или клеммы, на которых формируется постоянное напряжение 24 В.
На передней панели PD-6359 размещены кнопка для включения и выключения питания системы, индикаторы, отображающие режим работы устройства, напряжение в сети и на выходных клеммах 24 В.
На задней панели размещены клеммы для подключения к сети 220 В 50 Гц, клеммы для подключения АКБ, 8 отключаемых розеток с заземлением, 2 неотключаемые розетки с заземлением, выходные клеммы для питания оборудования от источника напряжением 24 В. Отключаемые розетки объединены в группы, рассчитанные на мощность 2 кВт. Неотключаемые розетки рассчитаны на мощность 700 Вт и предназначены для питания, например, зарядного устройства PB-6207, которое должно оставаться включенным всегда. При включении питания системы на розетках каждой группы напряжение 220 В появляется не одновременно, а с задержкой в 2 секунды. Это позволяет плавно увеличивать потребляемую мощность системы и предотвращает перегрузку сети и аварийное отключение источника питания. Устройство имеет клеммы, при замыкании которых происходит включение системы.
Конструкция блока PD-6359 предусматривает установку в стандартный 19″ аппаратный шкаф.
Технические характеристики | PD-6359 |
Назначение | блок питания |
Интерфейс для управления | RS-485, 9600 бит/с |
Количество розеток | 8 отключаемых (в 3-х группах) и 2 неотключаемые |
Максимальная нагрузка | 2 кВт на каждую группу отключаемых розеток, 700 Вт для неотключаемых розеток |
Внутренний стабилизатор | 24 В, 5 А макс. |
Напряжение питания | 220 В 50 Гц или 24 В пост. тока |
Максимальная потребляемая мощность | 220 Вт |
Количество установочных мест | 3 U |
Габариты (Ш×В×Г) | 482×132×360 мм |
Масса (нетто) | 11,18 кг |
Габаритные размеры упаковки (Ш×В×Г) | 583×237×458 мм |
Масса оборудования с упаковкой | 12,62 кг |
Схема применения:
Вид сзади:Информация о технических характеристиках, комплекте поставки и внешнем виде товара носит справочный характер и основывается на последних доступных к моменту публикации сведениях
Сертификаты и паспорта: Консультации по оборудованию Новый вопросЗадайте вопрос специалисту о PD-6359 Блок контроля и распределения питания
Доставка курьером:* Пункт выдачи:* Транспортные компании: Отделение Почты РФ:* При наличии товара на складе в Москве
Отзывы покупателей: Написать отзывОставьте Ваш отзыв о товаре Inter-M PD-6359
www.aktivsb.ru
Небольшой блок бесперебойного питания для систем контроля доступа
Многие пользователи компьютеров привыкли к тому, что блок бесперебойного питания это такая довольно габаритная штуковина, которая обычно стоит где-то под столом и иногда пищит, когда нет электричества.Но мелкие устройства также требуют бесперебойного питания, и для них производятся такие вот мелкие UPSы.
Конечно можно поставить и обычный «компьютерный» бесперебойник, но здесь есть несколько тонких моментов:
1. Не все они могут работать с небольшой мощностью нагрузки
2. КПД такого решения обычно как у паровоза.
3. Аккумулятор стоит рядом с греющимся трансформатором и его срок службы может существенно снизиться.
Кстати, обычные UPSы иногда могут подложить «свинью» для компьютеров, которые должны работать всегда, например в системе видеонаблюдения. Хотя это и не относится непосредственно к теме обзора, но продемонстрирую ситуацию, когда UPS может и навредить.
1. Настраиваем компьютер на автостарт при подаче питания и корректное завершение работы по разряду аккумулятора.
2. Есть электричество, все работает
3. Выключили питание, компьютер работает от аккумулятора
4. Аккумулятор разрядился, от UPSа пошла команда на выключение компьютера.
6. Компьютер выключился автоматически, но электричество есть.
7. Все, приплыли.
В течении почти всего процесса «общения» с данным товаром меня не покидала мысль — ну ведь могут когда захотят. Но мысль ушла когда я составил схему устройства.
Но буду последователен, сначала осмотр.
Получил свой товар я в пакете за защелкой, в которой была картонная коробка и пакет с радиопультами.
В комплект входит:
1. Блок бесперебойного питания
2. Четыре радиопульта
3. Плата приемника сигналов с пультов
4. Инструкция.
Устройство продается в трех вариантах комплектации:
1. С одним радиопультом
2. С двумя радиопультами
3. С четырьмя радиопультами
Я решил что раз уж заказывать, то в максимальной комплектации, да и если покупать, то на мой взгляд этот вариант получается выгоднее, тем более что пульты имеют свойство ломаться или теряться.
Инструкция на китайском и английском языке, кроме описания указаны варианты схем подключения.
Модуль приемника. Небольшая платка с антенной -пружинкой. Здесь особо и сказать нечего, кроме того что он работает 🙂
На плате можно задать свой код, если код изменен, то такой же надо задать и в пультах.
Код задается при помощи перемычек из припоя. Изменять код обычно не нужно, но если при нажатии на кнопку вашего пульта у соседа открываются электроворота или сосед внезапно приезжает домой, то лучше изменить :)))
Дизайн пультов думаю знаком многим, только в данном случае на пульте только одна кнопка, причем красная, прям как в фильмах.
Имеется выдвижная антенна, но на самом деле довольно неплохо работает и когда она спрятана.
Открывается пульт очень легко, три небольших самореза и мы внутри. Питание от стандартной 12 Вольт батареи, думаю пользователи автосигнализаций ее довольно хорошо знают. Хотя в последнее время чаще попадаются тонкие литиевые батарейки.
На плате пульта также присутствуют перемычки, для того чтобы код совпадал, требуется и совпадение конфигурации перемычек пульта и приемника.
Хотя лично как для меня, то радиоуправление дверьми с радиопульта вещь весьма неправильная, а если точнее, то это лишняя дыра в безопасности, потому использовать лучше только на некритичных объектах.
Пульт и прочее особо никому неинтересно, потому я закругляюсь с их описанием и перейду к обзору того, что собственно меня и заинтересовало.
Кроме знакомого фото с коробком, для более точного понимания размеров приложу картинку из магазина.
Блок представляет из себя Г-образное алюминиевое шасси, выполняющее одновременно функцию радиатора и прозрачную крышку, закрывающую большую часть компонентов.
Практически всю переднюю сторону занимает длинный клеммник, ниже я дам схему что и зачем нужно.
Слева расположен подстроечный резистор, при помощи него регулируется время задержки переключения реле.
1. С левой стороны находится разъем для подключения питания. В комплекте дали кусок провода с ответной частью разъема. В тестах я использовал соединители Ваго, но как по мне, то в данном случае лучше был бы винтовой клеммник.
3, 4. Особых проблем с установкой модуля нет, если не считать того, что полностью усадить модуль в разъем не получится, подстроечный конденсатор и катушка упрутся в корпус реле. На функциональности это никак не отразится, но запас при проектировании явно заложили меньше чем требуется.
А вот теперь я перейду к описанию подключения, а заодно расскажу о функционале данного устройства.
По своей сути вся эта конструкция является блоком питания + модулем заряда аккумулятора + схемой управления электрозамком.
Так как я описываю подключение, то остановлюсь на блоке управления.
По сути это просто таймер удержания команды. Т.е. мы имеем:
1. Вход от радиопульта
3. Вход с гальванической развязкой, сюда можно подать сигнал напряжением 3-12 Вольт, например от ардуины или просто батарейки.
На выходе стоит реле с переключающей группой, при помощи определенных коммутаций можно либо подавать 12 Вольт в нагрузку, либо наоборот, обесточивать.
Также слева виден подстроечный резистор, при помощи которого задается время удержания. Т.е. команду можно подать коротко, реле будет держать определенное время. Диапазон регулировки примерно 0,5-15 секунд.
Но стоит учитывать, что работает схема не как одновибратор, например если настроено 10 секунд, а замкнули на секунду, то реле включится на 10 секунд, если настроено на 5 секунд, а удерживаем 10 секунд, то и реле будет работать 10 секунд.
Для электромеханического замка или защелки настраивают минимальное время и подачу питания в нагрузку при срабатывании.
Внимание, схема не рассчитана на коммутацию высокого напряжения и подразумевается что все питания берется от этого же БП. Общий контакт реле соединен с общим проводом (минусом схемы), а кроме того параллельно контактам реле стоят защитные диоды.
Попутно плата имеет выход 12 Вольт для питания контроллера и отдельные клеммы для подключения аккумулятора.
Схема показана очень утрированно, рисовали ее видимо уже в магазине и для каждого варианта подключения ее лучше рисовать отдельно, если эта информация нужна, то могу дать пару вариантов.
Провода для подключения питания и аккумулятора идут в комплекте, сам аккумулятор в комплекте не идет.
Корпус закрыт защитной пленкой, рекомендую ее снять, охлаждение будет лучше. Я сразу этого не сделал и половину тестов провел с ней.
Защитная крышка крепится на паре винтов М3, в жизни ее снимать не надо, так как ко всем разъемам есть доступ, а единственный предохранитель впаян.
Но перед осмотром платы я решил немного отвлечься на предварительные измерения, и как показала практика, не зря.
Если по выходу 12 Вольт все красиво, то на выходе для подключения аккумулятора тестер показал более 16 Вольт.
Дальше я провел несколько тестов с аккумулятором и выяснил некоторые особенности.
1. Ток потребления платы без нагрузки составляет около 50мА.
2, 3. Ток заряда около 100мА при напряжении на аккумуляторе 12.5 Вольта.
4. Так как я выяснил, что зарядное устройство не знает что такое ограничение напряжения и выдает на выходе до 16.5 Вольта без нагрузки, то я провел эксперимент.
Подобрал пару резисторов при подключении которых напряжение близкое к напряжению окончания заряда (на самом деле надо было 13.8 Вольта) и посчитал ток который будет идти через аккумулятор при этом напряжении.
У меня вышло, сопротивление нагрузки 208 Ом (300+680 Ом параллельно). При напряжении 14.05 Вольта ток составит — 67мА (14.05/208=0,067).
С одной стороны ток заряда очень мал, чтобы испортить аккумулятор, а с другой он не очень высок чтоы его зарядить за вменяемое время.
Т.е. если с отсутствием автотключения заряда еще можно смириться, то заряжать аккумулятор емкость 7Ач более трех суток как-то долго. Причем если поставить мелкий аккумулятор, например 1Ач, то тогда начнет сказываться отсутствие отключения заряда.
Микросхема высоковольтного ШИМ контроллера и выходная диодная сборка прикручены к радиатору. Радиатор, в свою очередь, соединен с заземляющим проводом входного разъема, потому по правилам безопасности заземлять обязательно.
Откручиваем плату от радиатора и вынимаем. Снизу проложена толстая защитная пленка, плюс производителю.
Входной фильтр присутствует практически в полном объеме.
Все сделано почти как по учебнику,
1. На входе конденсаторы класса X и Y, причем не только те, которые подключены к проводу
заземления, а и межобмоточные.
2. Мало того, присутствует варистор, что вообще встречается крайне редк
www.kirich.blog
Небольшой блок бесперебойного питания для систем контроля доступа
Я уже делал довольно много обзоров различных блоков питания, и эта тема наверное моя самая любимая. Но так получилось, что я практически обошел вниманием такую категорию устройств как блоки бесперебойного питания, хотя у меня и есть один обзор на эту тему.Устройство с первого знакомства приятно удивило, но реальность оказалась заметно сложнее.
Впрочем все как всегда под катом.
Многие пользователи компьютеров привыкли к тому, что блок бесперебойного питания это такая довольно габаритная штуковина, которая обычно стоит где-то под столом и иногда пищит, когда нет электричества.
Но мелкие устройства также требуют бесперебойного питания, и для них производятся такие вот мелкие UPSы.
Конечно можно поставить и обычный «компьютерный» бесперебойник, но здесь есть несколько тонких моментов:
1. Не все они могут работать с небольшой мощностью нагрузки
2. КПД такого решения обычно как у паровоза.
3. Аккумулятор стоит рядом с греющимся трансформатором и его срок службы может существенно снизиться.
Кстати, обычные UPSы иногда могут подложить «свинью» для компьютеров, которые должны работать всегда, например в системе видеонаблюдения. Хотя это и не относится непосредственно к теме обзора, но продемонстрирую ситуацию, когда UPS может и навредить.
1. Настраиваем компьютер на автостарт при подаче питания и корректное завершение работы по разряду аккумулятора.
2. Есть электричество, все работает
3. Выключили питание, компьютер работает от аккумулятора
4. Аккумулятор разрядился, от UPSа пошла команда на выключение компьютера.
5. Пошел процесс автоматического завершения работы и тут опять подали питание.
6. Компьютер выключился автоматически, но электричество есть.
7. Все, приплыли.
В течении почти всего процесса «общения» с данным товаром меня не покидала мысль — ну ведь могут когда захотят. Но мысль ушла когда я составил схему устройства.
Но буду последователен, сначала осмотр.
Получил свой товар я в пакете за защелкой, в которой была картонная коробка и пакет с радиопультами.
В комплект входит:
1. Блок бесперебойного питания
2. Четыре радиопульта
3. Плата приемника сигналов с пультов
4. Инструкция.
Устройство продается в трех вариантах комплектации:
1. С одним радиопультом
2. С двумя радиопультами
3. С четырьмя радиопультами
Я решил что раз уж заказывать, то в максимальной комплектации, да и если покупать, то на мой взгляд этот вариант получается выгоднее, тем более что пульты имеют свойство ломаться или теряться.
Инструкция на китайском и английском языке, кроме описания указаны варианты схем подключения.
Модуль приемника. Небольшая платка с антенной -пружинкой. Здесь особо и сказать нечего, кроме того что он работает 🙂
На плате можно задать свой код, если код изменен, то такой же надо задать и в пультах.
Код задается при помощи перемычек из припоя. Изменять код обычно не нужно, но если при нажатии на кнопку вашего пульта у соседа открываются электроворота или сосед внезапно приезжает домой, то лучше изменить :)))
Дизайн пультов думаю знаком многим, только в данном случае на пульте только одна кнопка, причем красная, прям как в фильмах.
Имеется выдвижная антенна, но на самом деле довольно неплохо работает и когда она спрятана.
В общем обычный пульт, ничего необычного.
Открывается пульт очень легко, три небольших самореза и мы внутри. Питание от стандартной 12 Вольт батареи, думаю пользователи автосигнализаций ее довольно хорошо знают. Хотя в последнее время чаще попадаются тонкие литиевые батарейки.
На плате пульта также присутствуют перемычки, для того чтобы код совпадал, требуется и совпадение конфигурации перемычек пульта и приемника.
Хотя лично как для меня, то радиоуправление дверьми с радиопульта вещь весьма неправильная, а если точнее, то это лишняя дыра в безопасности, потому использовать лучше только на некритичных объектах.
Пульт и прочее особо никому неинтересно, потому я закругляюсь с их описанием и перейду к обзору того, что собственно меня и заинтересовало.
Скажу сразу, когда взял в руки, то было ощущение довольно фирменной вещи, выполнено очень аккуратно.
Кроме знакомого фото с коробком, для более точного понимания размеров приложу картинку из магазина.
Блок представляет из себя Г-образное алюминиевое шасси, выполняющее одновременно функцию радиатора и прозрачную крышку, закрывающую большую часть компонентов.
Практически всю переднюю сторону занимает длинный клеммник, ниже я дам схему что и зачем нужно.
Слева расположен подстроечный резистор, при помощи него регулируется время задержки переключения реле.
1. С левой стороны находится разъем для подключения питания. В комплекте дали кусок провода с ответной частью разъема. В тестах я использовал соединители Ваго, но как по мне, то в данном случае лучше был бы винтовой клеммник.
2. С правой стороны разъем для подключения радиомодуля.
3, 4. Особых проблем с установкой модуля нет, если не считать того, что полностью усадить модуль в разъем не получится, подстроечный конденсатор и катушка упрутся в корпус реле. На функциональности это никак не отразится, но запас при проектировании явно заложили меньше чем требуется.
А вот теперь я перейду к описанию подключения, а заодно расскажу о функционале данного устройства.
По своей сути вся эта конструкция является блоком питания + модулем заряда аккумулятора + схемой управления электрозамком.
Так как я описываю подключение, то остановлюсь на блоке управления.
По сути это просто таймер удержания команды. Т.е. мы имеем:
1. Вход от радиопульта
2. Вход от внешних команд (Push2 Push3), на которые подается либо 12 Вольт, либо ноль в зависимости от входа (активный 0 или 1).
3. Вход с гальванической развязкой, сюда можно подать сигнал напряжением 3-12 Вольт, например от ардуины или просто батарейки.
На выходе стоит реле с переключающей группой, при помощи определенных коммутаций можно либо подавать 12 Вольт в нагрузку, либо наоборот, обесточивать.
Также слева виден подстроечный резистор, при помощи которого задается время удержания. Т.е. команду можно подать коротко, реле будет держать определенное время. Диапазон регулировки примерно 0,5-15 секунд.
Но стоит учитывать, что работает схема не как одновибратор, например если настроено 10 секунд, а замкнули на секунду, то реле включится на 10 секунд, если настроено на 5 секунд, а удерживаем 10 секунд, то и реле будет работать 10 секунд.
Для электромеханического замка или защелки настраивают минимальное время и подачу питания в нагрузку при срабатывании.
Для электромагнитного замка все наоборот, время 10-15 секунд, и реле должно отключать питание.
Внимание, схема не рассчитана на коммутацию высокого напряжения и подразумевается что все питания берется от этого же БП. Общий контакт реле соединен с общим проводом (минусом схемы), а кроме того параллельно контактам реле стоят защитные диоды.
Попутно плата имеет выход 12 Вольт для питания контроллера и отдельные клеммы для подключения аккумулятора.
Схема показана очень утрированно, рисовали ее видимо уже в магазине и для каждого варианта подключения ее лучше рисовать отдельно, если эта информация нужна, то могу дать пару вариантов.
Провода для подключения питания и аккумулятора идут в комплекте, сам аккумулятор в комплекте не идет.
Корпус закрыт защитной пленкой, рекомендую ее снять, охлаждение будет лучше. Я сразу этого не сделал и половину тестов провел с ней.
Защитная крышка крепится на паре винтов М3, в жизни ее снимать не надо, так как ко всем разъемам есть доступ, а единственный предохранитель впаян.
Но перед осмотром платы я решил немного отвлечься на предварительные измерения, и как показала практика, не зря.
Если по выходу 12 Вольт все красиво, то на выходе для подключения аккумулятора тестер показал более 16 Вольт.
Дальше я провел несколько тестов с аккумулятором и выяснил некоторые особенности.
1. Ток потребления платы без нагрузки составляет около 50мА.
2, 3. Ток заряда около 100мА при напряжении на аккумуляторе 12.5 Вольта.
4. Так как я выяснил, что зарядное устройство не знает что такое ограничение напряжения и выдает на выходе до 16.5 Вольта без нагрузки, то я провел эксперимент.
Подобрал пару резисторов при подключении которых напряжение близкое к напряжению окончания заряда (на самом деле надо было 13.8 Вольта) и посчитал ток который будет идти через аккумулятор при этом напряжении.
У меня вышло, сопротивление нагрузки 208 Ом (300+680 Ом параллельно). При напряжении 14.05 Вольта ток составит — 67мА (14.05/208=0,067).
С одной стороны ток заряда очень мал, чтобы испортить аккумулятор, а с другой он не очень высок чтоы его зарядить за вменяемое время.
Т.е. если с отсутствием автотключения заряда еще можно смириться, то заряжать аккумулятор емкость 7Ач более трех суток как-то долго. Причем если поставить мелкий аккумулятор, например 1Ач, то тогда начнет сказываться отсутствие отключения заряда.
Микросхема высоковольтного ШИМ контроллера и выходная диодная сборка прикручены к радиатору. Радиатор, в свою очередь, соединен с заземляющим проводом входного разъема, потому по правилам безопасности заземлять обязательно.
Откручиваем плату от радиатора и вынимаем. Снизу проложена толстая защитная пленка, плюс производителю.
Входной фильтр присутствует практически в полном объеме.
Все сделано почти как по учебнику,
1. На входе конденсаторы класса X и Y, причем не только те, которые подключены к проводу
заземления, а и межобмоточные.
2. Мало того, присутствует варистор, что вообще встречается крайне редко.
3. Есть и термистор для ограничения тока заряда конденсатора фильтра. Диоды моста пытался рассмотреть, но такое чувство что их выводы специально изогнуты так, чтобы не видно было маркировки.
4. А сам конденсатор хоть и имеет емкость всего 33мкФ при требуемой 56-68, но очень даже фирменный.
Причем то, что входной конденсатор поставили нормальный, явление не случайное. На фото со страницы магазина стоит конденсатор другой фирмы (Samwha), но сопоставимого уровня качества.
То же самое касается и выходных конденсаторов.
Не меньше чем фильтр, меня удивило то, что применен мощный ШИМ контроллер KA5L0380R, причем также вполне фирменный, производства Fairchild. Если я ничего не путаю, то именно этот контроллер применен в спутниковых тюнерах Самсунг, впрочем префикс KA в названии это отсылка к фирме Самсунг.
Данный контроллер предназначен для построения блоков питания мощностью до 75 Ватт и имеет большое количество защит, от перегрева, перегрузки, повышенного и пониженного напряжения.
А вот на выходной диодной сборке сэкономили, применена YG902C2, она рассчитана на ток 10 Ампер (не уверен, 1х10 или 2х10), но хуже другое, она не Шоттки.
Блок питания имеет максимальную выходную мощность 60 Ватт, трансформатор применен с довольно большим запасом (E30/15/11), согласно моим расчетам, в этой схеме он имеет мощность 80-100 Ватт.
Из минусов отмечу то, что микросхема и диодная сборка были прикручены без теплопроводящей пасты!
Коротко про остальные составляющие части:
1. Цепь обратной связи по всем правилам, оптрон, TL431, цепь коррекции и регулировки выходного напряжения (регулировка весьма плавная). БП работает бесшумно во всем диапазоне мощностей.
2. На выходе стоят не только фирменные конденсаторы, а и солидных размеров дроссель.
3. Реле коммутации аккумулятора, диоды развязки питания и зарядного устройства.
4. Узел таймера и оптрон гальванической развязки управления.
5. Реле управления нагрузкой и подстроечный резистор таймера.
6. Монтаж очень плотный, мало того что сама плата двухслойная, так детали находятся даже под трансформатором. Правда для электролитического конденсатора это не очень хорошо.
На всякий случай пара общих фото платы с двух ракурсов.
Хотя плата двухслойная, компоненты расположены только с одной стороны и что интересно, все компоненты обычные, а не SMD. Даже как-тот непривычно, напоминает некоторые брендовые устройства.
Еще один плюс, присутствую все необходимые защитные прорези в печатной плате. Причем не только между «горячей» и «холодной» сторонами платы, а и между контактами входного разъема. Большой плюс производителю.
Как вы наверное уже догадались, я решил начертить схему данного устройства. Особенно меня интересовала реализация цепи заряда и контроля аккумулятора. Работа по своему не очень простая, но любопытство взяло свое 🙂
Отчасти добавляло удобства то, что некоторые номиналы подписаны на самой плате, но к сожалению далеко не все элементы имеют позиционное обозначение.
Для удобства я разделил сему на условные блоки, где показано:
Красный — высоковольтная часть БП
Синий — Низковольтная часть БП
Зеленый — зарядное устройство и реле аккумулятора
Оранжевый — Схема таймера задержки реле.
Меня интересовала схема заряда и коммутации аккумулятора, потому я ее выделил отдельно, попутно убрав те элементы, которые отношения к ее работе не имеют.
Красный — зарядная часть
Синий — управление реле.
Черный — основной блок питания.
Явно видно, что проектировал ее студент, потому как заряд идет просто через резистор. т.е. имеем цепь — дополнительная обмотка трансформатора, выпрямитель, резистор.
Не меньше меня удивило то, что аккумулятор коммутируется при помощи реле. Я как-то показывал как самому сделать небольшой бесперебойник, там коммутации не было, была защита от переразряда, стабилизация тока заряда, а также защита от неправильного подключения батареи, но был и минус, в рабочем режиме на выходе было не 12 Вольт, а 14.
Здесь же все наоборот, единственный плюс (кроме простоты) этого решения в том, что при питании от сети на выходе будет 12 Вольт, а 12-13.5 будет только при переключении на батарею.
Кстати насчет переключения, как по мне, то для устройства лучше чтобы ему питание либо вообще не отключали, либо отключали на более длительное время чем время переключения контактов реле. Некоторые видеокамеры или контроллеры могут «подвиснуть».
Схема однозначно требует доработки, но не в этот раз. В качестве небольшого анонса, у меня для обзора лежит еще один подобный блок питания. И к его обзору я планирую придумать (хотя скорее уже придумал) небольшую платку для доработки и устранения большей части недоработок. Если считаете, что это имеет смысл, то будет схема и чертежи.
Пока писал осматривал монтаж, чертил схему, то у меня было устойчивое ощущение чего-то знакомого. Такое чувство, что блок проектировали несколько человек, потому как часть реализована просто отлично, а часть из рук вон плохо.
Вроде как нормальная хорошая машина, а одно колесо из трех — от велосипеда.
Ну или еще одна аналогия 🙂
Осмотрел, схему начертил, немного похвалил, а также поругал, пора и тесты провести.
Был собран классический тестовый стенд, состоящий из:
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ручка
Дальше блок питания был проверен под нагрузкой с интервалами от холостого хода до максимальной мощности.
1. Холостой ход.
2. 15 Ватт (1.25А)
1. 30 Ватт (2.5 А)
2. 45 Ватт (3.75А)
Пульсации начали хоть как то себя проявлять на осциллографе только при максимальной мощности, что можно считать отличным результатом.
На всякий случай я прогнал дополнительный тест при нагрузке 110% от заявленной. Нагрев был приличный, но БП вел себя абсолютно стабильно.
Но на этом тесте я не стал останавливаться и измерил еще и КПД. Правда на КПД повлиял тот момент, что при подаче питания включается еще и одно из реле, но не думаю что на большой мощности это имеет значение.
В данном случае я проверял при помощи другой электронной нагрузки, где включал режим с постоянной мощностью, так удобнее для измерения КПД
1. Режим холостого хода + включенное реле.
2. Заряд аккумулятора.
3. Выходная мощность 15 Ватт (25%)
4. 30 Ватт (50%)
5. 45 Ватт (75%)
6. 60 Ватт (100%)
КПД при этом составил:
25% нагрузка — 74,25%
50% нагрузка — 78,53%
75% нагрузка — 78,67%
100% нагрузка — 78,84%
Все измеренные данные были сведены в таблицу.
Некоторые пояснения к таблице. Нагрузка увеличивалась поэтапно с интервалами в 20 минут, последний тест 15 минут, общее время теста составило 95 минут.
Температура диодного моста (первая колонка) приведена ориентировочно, так как я не мог подлезть пирометром и он попутно захватывал мощный резистор, который имел более высокую температуру. В качестве температуры трансформатора приведена температура его магнитопровода, как наиболее критичная.
Узнав в процессе тестов КПД устройства, а также сделав термограмму я могу сказать куда девается лишняя энергия.
На термограмме видно что самая высокая температура на обмотках трансформатора, подозреваю что хоть сердечник и выбрали с запасом, то на сечении провода немного сэкономили.
К сожалению доработать это весьма сложно. А вот при желании выиграть несколько процентов заменив выходную диодную сборку на Шоттки, вполне реально.
Но при этом я бы не сказал, что БП имел критичные температуры, пожалуй обратить внимание стоит только на выходные конденсаторы, потому как по остальным компонентам до перегрева еще далеко, особенно с учетом того, что тест проводился на максимальной мощности.
Реально безопасно можно эксплуатировать данный БП при токах до 4 Ампер.
Теперь все, подведу итоги.
Преимущества
Качественные компоненты
Реальная выходная мощность
Наличие большого количества входов управления
Наличие радиоуправления
Продуманная схемотехника (по большей части)
Все пульты укомплектованы батарейками
Очень низкий уровень пульсаций
Недостатки
Некорректная схема заряда
Отсутствие защиты от переразряда батареи
Наличие коммутации сеть/батарея.
Входной конденсатор имеет заниженную емкость
Мое мнение. Вот честно, если рассматривать данное устройство как блок питания и коммутатор замка, то просто отлично, даже и придраться особо не к чему. Качественные компоненты, нормальная схемотехника, аккуратная конструкция.
Но при этом полная противоположность собственно «фишки» данного устройства, бесперебойном питании. Зарядное надо дорабатывать, а если точнее, то переделывать, кроме того надо добавить защиту от переразряда.
В общем видно что старались, но часть работы по проектированию отдали не тому, кто знает что делает.
Теперь в планах подготовка обзора второго, подобного, устройства. Где я планирую все таки придумать как все это сделать правильно.
На этом пока закончу, надеюсь что было интересно и полезно.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru
Блок питания 12 Вольт 3 Ампера для систем контроля доступа
В последнее время довольно большое количество моих обзоров начинаются словами — некоторое время назад я выкладывал обзор…На этот раз точно такая же картина, у меня был обзор блока питания для СКУД, только в тот раз это был вариант 12 Вольт 5 Ампер с функцией блока бесперебойного питания, а в этот раз упрощенный вариант.
Впрочем подробнее можно узнать в самом обзоре.
Для начала пару слов о том, зачем нужен такой хитрый блок питания и почему в предисловии была аббревиатура СКУД.
Многие наверное видели двери с электронными замками, в подъездах, офисах, частных домах и т.п. В простейшем виде подобная система состоит из замка (электромагнитного или электромеханического), контроллера, считывателя (ТМ, RFID, дактилоскопический и т.п.) и блока питания.
Вместе они образуют СКУД — Система Контроля и Управления Доступом. К подобной системе также можно подключить выход от домофона чтобы по его команде происходила разблокировка замка.
Пару слов о замках и почему одни блоки питания имеют функцию блока бесперебойного питания, а другие нет.
Если вы применяете электромагнитный замок, то чтобы при пропадании электричества он продолжал держать дверь, надо иметь бесперебойное питание. Такой замок вы можете увидеть в двери подъезда, обычно он стоит или в самом верху, или в районе ручки и часто скрыт.
Электромеханический замок не требует постоянного питания, так как по сути представляет собой обычную защелку. Часто думают, что электромагнит приводит в действие язычок защелки (хотя такие системы также существуют), но обычно все немного не так. Внутри замка скрыт механизм, который взводится когда вы закрываете дверь и удерживается взведенным до срабатывания механизма открывания. Разблокировать его можно обычно тремя способами — поворот ключа, нажатие на кнопку замка (механическую), электромагнитом по внешней команде. В принципе есть еще четвертый способ, резкий сильный удар в районе замка, но срабатывает он далеко не всегда.
Механизм разблокировки сдвигает маленький механизм внутри замка, а дальше мощная пружина отводит основную защелку. Чтобы привести все в исходное состояние, надо приоткрыть и опять закрыть дверь.
Собственно к чему я все это написал, в прошлый раз я показывал блок питания с возможностью подключения аккумулятора, сегодня же упрощенная версия, которую я планировал простым способом доработать для применения с аккумулятором, но не срослось.
Как и в прошлый раз, поставляется набор в пакете, где лежит еще один пакет с радиопультами, а также картонная коробка с блоком питания.
Как и в прошлый раз, есть три варианта комплектации, с одним пультом, двумя и четырьмя. Я заказывал вариант в максимальной комплектации.
1. Блок питания
2. Четыре радиопульта
3. Приемная часть радиоканала
4. Инструкция.
Инструкция на двух языках, китайском и английском, есть схема подключения, но как и в прошлый раз, ошибочная. Неправильно указано подключение замка. На схеме замок подключается к контактам реле, а подключать надо последовательно с контактами и нужна перемычка. Если необходимо, то я нарисую правильную схему.
Иногда возникают ситуации, когда замком управлять надо не со стационарного места. В таком случае применяются радиопульты. Предупрежу сразу, подобное решение резко снижает общую надежность системы к проникновению в закрытое помещение, потому применяют его только там, где это не критично.
Думаю что дизайн пультов знаком многим. Кстати, точно такие же пульты шли в комплекте к предыдущему блоку питания.
Питание от одной 12 Вольт батарейки.
Передающая и приемная часть. Видны места для перемычек при помощи которых задается код пульта. Код передатчика и приемника должен совпадать.
Вот я и подошел к основной части обзора, блоку питания.
В этот раз корпус целиком металлический, но применять его также можно только внутри помещения, так как защиты от влаги у него нет.
Сверху указаны краткие характеристики, входное напряжение 100-260 Вольт, выходное 12 Вольт, ток до 3 Ампер. Также расписано назначение контактов разъема.
Кроме того сверху находится светодиод индикации включения.
Для подключения к сети производитель просто вывел пару проводов через отверстие в корпусе, хорошо что догадался защитить отверстие при помощи резиновой вставки.
С другой стороны находится разъем подключения внешних устройств. в прошлый раз был клеммник, что менее удобно. Буквально несколько дней назад имел удовольствие переключать плату управления турникетом с кучей не подписанных проводов, вспомнил про подобные разъемы.
Снимаем крышку корпуса, она привинчена на пару небольших винтиков, я надеялся что провод питания подключен внутри при помощи разъема, но увы, он запаян в плату.
Компоновка устройства очень плотная, собственно печатная плата забита под завязку. При дальнейших экспериментах мне это аукнулось тем, что для замены одного компонента приходилось выпаивать еще какой нибудь.
Со стороны вода питания находится импровизированный радиатор, представляющий из себя рубленую алюминиевую пластину, которая в свою очередь прилегает к корпусу. Теплопроводящая паста отсутствует.
На второй стороне виден разъем для подключения приемника ДУ и подстроечный резистор при помощи которого выставляется время удержания реле.
Таймер необходим для работы с электромагнитными замками, он задает время в течении которого на замок не будет подаваться питания. С электромеханическими все гораздо проще, им для открывания достаточно короткого импульса.
Для дальнейшего рассмотрения я вынул плату из корпуса. Под платой присутствует защитная пленка. На мой взгляд данной конструкции явно не хватает клеммы заземления, странно что производитель об этом не позаботился, в предыдущем БП такая клемма присутствовала.
На входе присутствует полноценный сетевой фильтр, я как то снимал серию видеороликов по поводу отдельных узлов блоков питания. Здесь на вид особых проблем нет, входной конденсатор емкостью 33мкФ, блок питания имеет мощность 36 Ватт, конденсатор стоит впритык для такой мощности и нашего сетевого напряжения, для заявленных 100 Вольт его емкости будет мало.
Причем что интересно, предыдущий блок питания имел такую же емкость на входе и был рассчитан на 60 Ватт.
На фото видно два синих конденсатора, левый соединяет корпус блока питания с минусовым выводом входного конденсатора, правый межобмоточный помехоподавляющий. Но первый правильного типа — Y2, а вот второй самый обычный высоковольтный. Такая схема допускается только в варианте с заземлением корпуса, а заземлять некуда 🙁
ШИМ контроллер и выходная сборка полностью идентичны примененным в блоке питания 60 Ватт. Это KA5L0380R, рассчитанная на 75 Ватт и YG902C2 на ток до 10 Ампер, что с большим запасом для заявленных 36 Ватт и 3 Ампера.
Пайка силовых элементов несколько оригинальная, скорее всего сначала ставят плату в корпус, потом привинчивают элементы к радиатору, а потом запаивают.
Выходная часть блока питания также содержит дроссель, снижающий уровень пульсаций по выходу, это я позже еще проверю.
Внешне также все аккуратно. Кстати, плата не содержит SMD компонентов, все выполнено «по старинке», хотя как по мне, то главное результат.
1. А вот на конденсаторах на этот раз сэкономили. В прошлый раз были фирменные, здесь же обычный нонейм, причем выходные рассчитаны на 16 Вольт, что в подобных устройствах я считаю недопустимым, так как работать они должны круглосуточно.
2. Узел управления питанием замка реализован практически также, как и в предыдущем, тот же NE555. Впрочем я потом покажу это на схеме.
Плата двухсторонняя, но с обратной стороны только дорожки. Присутствуют защитные прорези, а также следы защитного лака, потому здесь у меня также претензий не было.
Еще в процессе осмотра было понятно, что схема будет похожа на схему предыдущего блока питания, дальнейшее разбирательство только подтвердило предположение. Схема данного блока питания примерно на 95% совпадает со схемой 12 Вольт 5 Ампер блока питания.
Так как функция бесперебойного питания не поддерживается, то блок можно разделить на два функциональных узла.
1. Красный — блок питания 12 Вольт 3 Ампера
2. Синий — схема управления реле и таймер задержки времени отпускания.
Также имеются некоторые косметические отличия, например у предыдущего варианта было два входа подключения кнопки, здесь оставили только один. Имеются отличия и в первичной части, например минус входного конденсатора соединен с корпусом (это к замечанию об отсутствии клеммы заземления).
В отличии от предыдущего варианта модуль приемника ставится аккуратнее, хотя катушка индуктивности все равно лежит на корпусе реле. Но есть и недостаток, забыли сделать отверстие через которое можно вывести антенну. В предыдущем корпус был частично из пластика и это было неважно, здесь же металл, потому антенну придется выводить наружу и сделать это более-менее нормально можно только через отверстие для подстроечного резистора.
Плавно переходим к тестам.
Первое включение прошло без всяких происшествий, засветился светодиод, а на выходе я получил заявленные 12 Вольт.
www.kirich.blog
Параметр |
Значение |
Вход напряжения питания (основное питание) |
|
Номинальное входное напряжение (Uн) |
~230 В, 50 Гц |
Рабочий диапазон входного напряжения |
от 170 до 242 В |
Релейный выход |
|
Количество релейных выходов |
1 |
Коммутируемые сигналы |
~230 В; 5 А; =24 В; 5 А |
Вход питания от аккумуляторной батареи (резервное питание) |
|
Номинальное входное напряжение (Uн) |
24 В |
Номинальный входной ток (Iн) |
5 А |
Максимальный входной ток (Iм) |
15 А |
Выход напряжения постоянного тока |
|
Номинальное значение |
220 В |
Диапазон выходного напряжения при Iн и Uн |
от 198 до 242 В |
Номинальная мощность нагрузки при Iн и Uн |
100 Вт |
Максимальная мощность нагрузки при Iм и Uн |
300 Вт |
Другие параметры |
|
Тип интерфейса |
RS-485 |
Скорость передачи |
115200 бит/с |
Габаритные размеры |
133´148´151 мм |
Масса |
1 кг |
Температура окружающей среды |
от минус 40 до +50 °С |
bemn.by
Продукты — Satis
Блок питания и контроля (БП и К) предназначен для обеспечения питания усилителей мощности приемо-передающих станций спутниковой связи постоянным напряжением =48 В с максимальным током до 5 А, а также, для контроля принимаемых по спутниковому каналу сигналов, преобразованных в полосу частот L – диапазона.
Диапазон рабочих частот | 950…1800 МГц |
Максимальный уровень входного сигнала | — 15 дБм |
Стабильность частоты | 2ppM |
Динамический диапазон | 40 дБ |
Программируемый аттенюатор | 0…31 дБ ( с шагом 5 дБ) |
Шаг перестройки частоты | 5, 10, 15, 20, 30, 40, 50 кГц |
Скорость перестройки частоты | 40 или 100 шагов/сек |
Полоса пропускания | 6 кГц |
Внешний интерфейс | USB |
Питание | + 5 В (до 400 мА) по USB |
Категория оборудования | Электронное оборудование |
Питание усилителя мощности | 48В/5А |
Деление промежуточной частоты в приемном тракте, L-диапазон | 1:3 |
Питание МШУ(LNB) | передача напряжения питания 24В/1А и опорной частоты 10МГц на МШУ(LNB) |
Опорная частота на МШУ(LNB) | 10 МГц |
Анализ частотного спектра в полосе частот | 950…1800 МГц |
Габариты | 480 х 280 х 44 мм (1U) |
Вес брутто, не более | 3,9 кг (основное исполнение) 4,9 кг (исполнение — 01) |
Диапазон рабочих частот | 950…2200 МГц |
Волновое сопротивление | 50 Ом |
КСВН (входа и выхода), не более | 1,3 (тип. 1,2) |
Вносимые потери, не более | 0,9 дБ (тип. 0,6 дБ) |
Затухание на частоте 10 МГц, не более | 1,1 дБ (тип. 0,7 дБ) |
Развязка между выходами, не менее | 20 дБ (тип. 27 дБ) |
Максимальное напряжение постоянного тока | 30 В |
Максимальный постоянный ток | 2 А |
Тип соединителей | N (гнездо) |
Входное напряжение питания | ~ 160…250 В / 48…62 Гц |
Выходное напряжение | = 48 В |
Максимальный выходной ток | 5 А |
Максимальная амплитуда пульсаций | 250 мВ |
Типовой КПД источника | 88% |
Защита от перегрузки | 130% от макс. мощности |
Защита от перенапряжения | 57…67 В |
Защита от перегрева | 90°С ± 5°С |
www.satis-tl.ru
Блок питания 12 Вольт 3 Ампера для систем контроля доступа
В последнее время довольно большое количество моих обзоров начинаются словами — некоторое время назад я выкладывал обзор…На этот раз точно такая же картина, у меня был обзор блока питания для СКУД, только в тот раз это был вариант 12 Вольт 5 Ампер с функцией блока бесперебойного питания, а в этот раз упрощенный вариант.
Впрочем подробнее можно узнать в самом обзоре.
Для начала пару слов о том, зачем нужен такой хитрый блок питания и почему в предисловии была аббревиатура СУКД.
Многие наверное видели двери с электронными замками, в подъездах, офисах, частных домах и т.п. В простейшем виде подобная система состоит из замка (электромагнитного или электромеханического), контроллера, считывателя (ТМ, RFID, дактилоскопический и т.п.) и блока питания.
Вместе они образуют СКУД — Система Контроля и Управления Доступом. К подобной системе также можно подключить выход от домофона чтобы по его команде просходила разблокировка замка.
Пару слов о замках и почему одни блоки питания имеют функцию блока бесперебойного питания, а другие нет.
Если вы применяете электромагнитный замок, то чтобы при пропадании электричества он продолжал держать дверь, надо иметь бесперебойное питание. Такой замок вы можете увидеть в двери подъезда, обычно он стоит или в самом верху, или в районе ручки и часто скрыт.
Электромеханический замок не требует постоянного питания, так как по сути представляет собой обычную защелку. Часто думают, что электромагнит приводит в действие язычок защелки (хотя такие системы также существуют), но обычно все немного не так. Внутри замка скрыт механизм, который взводится когда вы закрываете дверь и удерживается взведенным до срабатывания механизма открывания. Разблокировать его можно обычно тремя способами — поворот ключа, нажатие на кнопку замка (механическую), электромагнитом по внешней команде. В принципе есть еще четвертый способ, резкий сильный удар в районе замка, но срабатывает он далеко не всегда.
Механизм разблокировки сдвигает маленький механизм внутри замка, а дальше мощная пружина отводит основную защелку. Чтобы привести все в исходное состояние, надо приоткрыть и опять закрыть дверь.
Собственно к чему я все это написал, в прошлый раз я показывал блок питания с возможностью подключения аккумулятора, сегодня же упрощенная версия, которую я планировал простым способом доработать для применения с аккумулятором, но не срослось.
Как и в прошлый раз, поставляется набор в пакете, где лежит еще один пакет с радиопультами, а также картонная коробка с блоком питания.
Как и в прошлый раз, есть три варианта комплектации, с одним пультом, двумя и четырьмя. Я заказывал вариант в максимальной комплектации.
1. Блок питания
2. Четыре радиопульта
3. Приемная часть радиоканала
4. Инструкция.
Инструкция на двух языках, китайском и английском, есть схема подключения, но как и в прошлый раз, ошибочная. Неправильно указано подключение замка. На схеме замок подключается к контактам реле, а подключать надо последовательно с контактами и нужна перемычка. Если необходимо, то я нарисую правильную схему.
Иногда возникают ситуации, когда замком управлять надо не со стационарного места. В таком случае применяются радиопульты. Предупрежу сразу, подобное решение резко снижает общую надежность системы к проникновению в закрытое помещение, потому применяют его только там, где это не критично.
Думаю что дизайн пультов знаком многим. Кстати, точно такие же пульты шли в комплекте к предыдущему блоку питания.
Питание от одной 12 Вольт батарейки.
Передающая и приемная часть. Видны места для перемычек при помощи которых задается код пульта. Код передатчика и приемника должен совпадать.
Вот я и подошел к основной части обзора, блоку питания.
В этот раз корпус целиком металлический, но применять его также можно только внутри помещения, так как защиты от влаги у него нет.
Сверху указаны краткие характеристики, входное напряжение 100-260 Вольт, выходное 12 Вольт, ток до 3 Ампер. Также расписано назначение контактов разъема.
Кроме того сверху находится светодиод индикации включения.
Для подключения к сети производитель просто вывел пару проводов через отверстие в корпусе, хорошо что догадался защитить отверстие при помощи резиновой вставки.
С другой стороны находится разъем подключения внешних устройств. в прошлый раз был клеммник, что менее удобно. Буквально несколько дней назад имел удовольствие переключать плату управления турникетом с кучей не подписанных проводов, вспомнил про подобные разъемы.
Снимаем крышку корпуса, она привинчена на пару небольших винтиков, я надеялся что провод питания подключен внутри при помощи разъема, но увы, он запаян в плату.
Компоновка устройства очень плотная, собственно печатная плата забита под завязку. При дальнейших экспериментах мне это аукнулось тем, что для замены одного компонента приходилось выпаивать еще какой нибудь.
Со стороны вода питания находится импровизированный радиатор, представляющий из себя рубленую алюминиевую пластину, которая в свою очередь прилегает к корпусу. Теплопроводящая паста отсутствует.
На второй стороне виден разъем для подключения приемника ДУ и подстроечный резистор при помощи которого выставляется время удержания реле.
Таймер необходим для работы с электромагнитными замками, он задает время в течении которого на замок не будет подаваться питания. С электромеханическими все гораздо проще, им для открывания достаточно короткого импульса.
Для дальнейшего рассмотрения я вынул плату из корпуса. Под платой присутствует защитная пленка. На мой взгляд данной конструкции явно не хватает клеммы заземления, странно что производитель об этом не позаботился, в предыдущем БП такая клемма присутствовала.
На входе присутствует полноценный сетевой фильтр, я как то снимал серию видеороликов по поводу отдельных узлов блоков питания. Здесь на вид особых проблем нет, входной конденсатор емкостью 33мкФ, блок питания имеет мощность 36 Ватт, конденсатор стоит впритык для такой мощности и нашего сетевого напряжения, для заявленных 100 Вольт его емкости будет мало.
Причем что интересно, предыдущий блок питания имел такую же емкость на входе и был рассчитан на 60 Ватт.
На фото видно два синих конденсатора, левый соединяет корпус блока питания с минусовым выводом входного конденсатора, правый межобмоточный помехоподавляющий. Но первый правильного типа — Y2, а вот второй самый обычный высоковольтный. Такая схема допускается только в варианте с заземлением корпуса, а заземлять некуда 🙁
ШИМ контроллер и выходная сборка полностью идентичны примененным в блоке питания 60 Ватт. Это KA5L0380R, рассчитанная на 75 Ватт и YG902C2 на ток до 10 Ампер, что с большим запасом для заявленных 36 Ватт и 3 Ампера.
Пайка силовых элементов несколько оригинальная, скорее всего сначала ставят плату в корпус, потом привинчивают элементы к радиатору, а потом запаивают.
Выходная часть блока питания также содержит дроссель снижающий уровень пульсаций по выходу, это я позже еще проверю.
Внешне также все аккуратно. Кстати, плата не содержит SMD компонентов, все выполнено «по старинке», хотя как по мне, то главное результат.
1. А вот на конденсаторах на этот раз сэкономили. В прошлый раз были фирменные, здесь же обычный нонейм, причем выходные рассчитаны на 16 Вольт, что в подобных устройствах я считаю недопустимым, так как работать они должны круглосуточно.
2. Узел управления питанием замка реализован практически также, как и в предыдущем, тот же NE555. Впрочем я потом покажу это на схеме.
Плата двухсторонняя, но с обратной стороны только дорожки. Присутствуют защитные прорези, а также следы защитного лака, потому здесь у меня также претензий не было.
Еще в процессе осмотра было понятно, что схема будет похожа на схему предыдущего блока питания, дальнейшее разбирательство только подтвердило предположение. Схема данного блока питания примерно на 95% совпадает со схемой 12 Вольт 5 Ампер блока питания.
Так как функция бесперебойного питания не поддерживается, то блок можно разделить на два функциональных узла.
1. Красный — блок питания 12 Вольт 3 Ампера
2. Синий — схема управления реле и таймер задержки времени отпускания.
Также имеются некоторые косметические отличия, например у предыдущего варианта было два входа подключения кнопки, здесь оставили только один. Имеются отличия и в первичной части, например минус входного конденсатора соединен с корпусом (это к замечанию об отсутствии клеммы заземления).
В отличии от предыдущего варианта модуль приемника ставится аккуратнее, хотя катушка индуктивности все равно лежит на корпусе реле. Но есть и недостаток, забыли сделать отверстие через которое можно вывести антенну. В предыдущем корпус был частично из пластика и это было неважно, здесь же металл, потому антенну придется выводить наружу и сделать это более-менее нормально можно только через отверстие для подстроечного резистора.
Плавно переходим к тестам.
Первое включение прошло без всяких происшествий, засветился светодиод, а на выходе я получил заявленные 12 Вольт.
При помощи подстроечного резистора можно выставить выходное напряжение в пределах от 11.7 до 13.7 Вольта.
Регулировка очень плавная, я без особых сложностей смог выставить ровно 12.000 Вольта. На самом деле это конечно не нужно и даже если бы на выходе было 12.5, то ничего страшного не произошло бы. Тем более, что по мере прогрева напряжение растет, применены обычные, а не прецизионные, резисторы.
Проверка точности поддержания напряжения под нагрузкой, здесь также проблем не обнаружено, хотя небольшая просадка имеется.
С пульсациями на выходе вообще отлично, немного пролезли сетевые 50Гц при максимальном токе, но опять же, не критично.
Щуп стоял 1:1, разрешение 50мВ на клетку, даже в самом худшем случае вышло всего около 10мВ, это мало, очень мало.
Посмотрим теперь КПД блока питания, так как для постоянно подключенного устройства это также немаловажно.
У меня вышло:
1. Холостой ход — 2.2-2.4 Ватта. по сути собственное потребление самого блока питания.
2. Ток 1 Ампер, мощность 12 Ватт — 69%
3. Ток 2 Ампера, мощность 24 Ватта — 77%
4. Ток 2.5 Ампера, мощность 30 Ватт — 75%
5. Ток 3 Ампера, мощность 35.5 Ватта — 73%
Самый высокий КПД вышел в районе мощности 24 Ватта. При токе нагрузки 3 Ампера выходное напряжение просело и итоговая мощность вышла 35.5, а не 36 Ватт.
Дальше шло привычное тестирование токами 1, 2, 3 Ампера с интервалами в 20 минут по окончании которых я снимал термограммы для контроля температуры.
1. Режим холостого хода, виден большой нагрев в правой части. Там расположен нагрузочный резистор сопротивлением 330 Ом (как и предыдущего), на нем рассеивается около 0.5 Ватта. Даже когда блок питания не нагружен, резистор имеет температуру в 90 градусов. Я думаю что таким образом производитель пытался бороться со свистом, так как в этом режиме он все таки присутствует.
2. Ток 1 Ампер, трансформатор имеет температуру в 55 градусов, а резистор разогрелся почти до 100, влияет внешний подогрев.
3. Ток 1 Ампер, но другой ракурс. Теперь стал виден термистор, который стоит на входе и курсор пиковой температуры сместился к нему, более 100 градусов, немало, особенно с учетом близкого расположения входного конденсатора.
4. Ток 2 Ампера, трансформатор прогрелся до 75 градусов, а термистор до 110. В итоге после всех тестов я его отогнул подальше от входного конденсатора, ему такая грелка рядом совсем ни к чему.
После прогрева заметно просел КПД при токе 2.5 Ампера и составил уже 67% вместо 77% как было в холодном состоянии. Но как оказалось, это было лишь «первым звоночком».
Причем при токах 1 и 2 Ампера КПД оставался прежним.
Я думаю, что многие мои читатели знакомы с моей методикой тестирования блоков питания, когда я ступенчато поднимают ток и тестирую под этим током определенное время. Таким образом я обычно узнаю максимальную мощность, которую может выдать БП без перегрева.
Выше я показал температуры при токе 1 и 2 Ампера, следующим шагом шел ток в 3 Ампера, что вполне логично.
Но после поднятия тока до 3 Ампер нагрузка отключилась по защите от снижения выходного напряжения, это было большим сюрпризом, так как обычно БП свой заявленный ток выдает без проблем, а иногда я доводил выходную мощность и до 150%.
Ладно, не вопрос, попробуем определить порог отключения, тем более БП был как раз «прогрет» и это лучше подходило для эксперимента.
Поднимаем ток нагрузки от нуля до 3.5 Ампера с шагом в 100мА. При токе в 2.8 Ампера напряжение на выходе стало снижаться, ъто заметно как на графике, так и в таблице справа, где показаны результаты последних шагов.
Выяснив, что максимальный ток при котором напряжение на выходе не снижается, составляет 2.7 Ампера, я выставил 2.5 Ампера и решил продолжить тест. Но вылезла вообще непредсказуемая проблема. Для начала скажу, что тест пришлось принудительно остановить спустя пол минуты.
Остановил, так как было ощущение, что что-то перегревается, думаю электронщики поймут.
Так и есть, температура одного из компонентов достигла 132 градуса. Ниже пара термограмм, это я «экспериментировал».
Судя по расположению места перегрева (термограмме сдвинута относительно фото) я выяснил, что это диод снаббера. Дело в том, что кроме этого диода там греться больше просто нечему.
Снаббер необходим для поглощения паразитных выбросов в первичной обмотке, но чаще греется собственно поглощающая часть, RC цепь или супрессор, но не диод. Так вот в данном случае грелся именно диод.
Я попробовал остудить блок питания, а потом провести тест еще раз, но ничего особо не изменилось, при токе в 3 Ампера быстро начинался перегрев вышеуказанного диода, на прогретом БП то же самое начиналось уже при токе в 2.5 Ампера.
Косвенное объяснение я увидел, когда в процессе тестов посмотрел на индикатор измерителя мощности, БП так и остался подключенным к нему после теста КПД, что отчасти и ускорило поиск проблемы.
Два теста, оба при токе 2.5 Ампера, но первый перед началом нагрева, второй после. Слева на мультиметре часы показывают некорректное время, но позволяют понять, что все происходит в пределах одной минуты.
При запуске потребляемая от сети мощность составляет 40.4 Ватта, но через 20-30 секунд уже 50 Ватт. Т.е. фактически БП начинает потреблять около 10 Ватт «в себя». И вот здесь вспомним про падение КПД после прогрева, я думаю что это связано.
Налицо явная проблема и мне захотелось попробовать понять, в чем же может быть дело. Для начала вернемся на несколько месяцев назад, когда я делал обзор БП 12 Вольт 5 Ампер, ведь тогда у него все было отлично и заявленную нагрузку он тянул без вопросов. Ниже его схема.
А теперь откроем схему обозреваемого БП. Я удалил то, что не имеет отношения к блоку питания и выделил цветом некоторе элементы:
1. Синий — отличается от предыдущего, но на проблему не влияет.
2. Оранжевый — изменено подключение, на проблему не влияет
3. Красный — отличается, но уже может влиять на то, что я видел выше.
Можно видеть, что ключевое отличие в элементах снабера в первичной цепи и RC цепи выходного диода. Причем мощность выделяемая на первом узле зависит от номиналов второго узла. Например если увеличить номинал конденсатора, подключенного параллельно выходному диоду, то мы немного снизим нагрузку на снаббер. Но возникнет другая проблема, при значительном увеличении емкости тяжелее придется выходному транзистору инвертора. Если совсем сильно увеличить, то это вооще чревато выходом из строя, у меня так выгорел ШИМ контроллер серии TOP2xx.
Так, мы немного отвлеклись. Производитель уменьшил сопротивление резистора в снаббере и увеличил емкость конденсатора в RC цепи параллельно выходному диоду. Т.е. он сознательно боролся с перегревом снаббера.
Я решил не сдаваться и пошел на небольшой эксперимент. Для начала выпаял диод снаббера, потому как было подозрение что вместо «быстрого» поставили обычный 1N4007, но там оказался вполне нормальный FR107. На всякий случай заменил его на более привычный для меня 1N4937. В процессе тестов был подозрительный щелчок и я сначала решил что это диод треснул от перегрева.
Затем я уменьшил емкость конденсатора RC цепи выходного диода до 2.2нФ, как у предыдущего БП.
Запустил тест, результаты в итоге были точно такие как и до эксперимента. Но когда БП пошел в разнос и я привычно снизил ток нагрузки с 3 до 2 Ампер, то выходное напряжение еще просело, а мощность по входу не упала.
Выводы, на мой взгляд была допущена проблема на этапе проектирования, и скорее всего в расчетах трансформатора. Примерно такое поведение бывает когда пытаешься «разогнать» блок питания поднятием выходного напряжения. Альтернативный вариант — неправильная намотка и уменьшенная связь между обмотками, но этот вариант менее вероятен.
Уже в процессе написания обзора я подумал, что можно было бы заменить трансформатор, но потом решил, что итоговая целесообразность этого стремится к нулю, так как одно дело поменять какой нибудь резистор, а совсем другое — трансформатор. Кроме того, мне не очень хочется делать работу разработчиков, за которую они получают зарплату.
Скорее всего спроектировали БП, допустили косяк с трансформаторов, а партия уже заказана. В итоге как-то победили ее, но не до конца в итоге загубили довольно неплохой БП.
На этом обзор можно закончить, но перед подведением итогов скажу, что изначально обзор планировался совсем другим. В планах было добавить к этому блоку питания функцию бесперебойника, по аналогии с тем, как я делал в этом обзоре. Дело в том, что указанная переделка требует поднятия напряжения со штатных 12 Вольт до примерно 14.4. Нормальный блок питания обычно переживает это без осложнений, немного снизится выходная мощность, но в остальном работает все нормально.
Но в данном случае блок питания и сам по себе работает тяжело, а задрать ему выходное напряжение на 20%, будет совсем плохо.
Как вариант, можно немного домотать вторичную обмотку, это кстати можно сделать и в качестве доработки для исправления проблем, но такая доработка выходит за рамки который я задал в плане переделок для обзоров.
От себя могу сказать, что я планирую придумать что нибудь, как с первым БП, так и возможно с показанным выше, но решение будет уже совсем другим.
Вот теперь можно подвести выводы.
В плане качества сборки я бы сказал что скорее хорошо, чем плохо. Выполнено все довольно аккуратно, хотя конденсаторы входного и выходного фильтра стоят безымянные. Неудобен принцип установки радиомодуля, нет отверстия для антенны. Если высунуть провод в отверстие подстроечного резистора, то работает отлично, проверял в пределах всей квартиры.
Электрические характеристики неоднозначны. Пульсации, регулировка, нагрев и КПД находится на нормально уровне для подобного БП, но при токах нагрузки до 2 Ампер. При больших токах, особенно начиная с тока в 2.5 Ампера начинается форменная свистопляска и при такой токе использовать его уже нельзя, по крайней мере длительно.
Получается, что формально это неплохой блок питания но с характеристиками — 12 Вольт 2 Ампера и его вполне можно использовать для питания контроллера доступа и замка. Например электромагнитный замок с нагрузкой до 280 кг потребляет всего 400мА, что даже с учетом потребления контроллера более чем с запасом, спокойно можно питать еще пару камер наблюдения… При использовании электромеханического замка все еще проще, там потребление большое, но импульсное.
В таком варианте применения есть только два места вызывающие нарекания — выходные конденсаторы на 16 Вольт вместо 25, чревато уменьшением срока службы, но если менять, то достаточно заменить только тот, что стоит до дросселя фильтра. Хотя с учетом того, что емкость конденсаторов имеет небольшой запас, то возможно будут служить и родные. Также если БП не заземлен, то надо менять один из мелких высоковольтных конденсаторов на конденсатор Y типа.
Вот теперь все, надеюсь что информация была полезна, как всегда буду рад вопросам и просто комментариям.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru