Содержание

Выпрямитель и простейший блок питания, как это сделать самому

Выпрямитель и простейший блок питания, как это сделать самому

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети.

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение.

Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t.

Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Полная версия даташита https://www.jameco.com/Jameco/Products/ProdDS/889305.pdf

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что компании Nissan Energy и OPUS Campers представили любопытную новинку — концептуальный автомобиль-кемпер Nissan x OPUS. Главная идея Nissan x OPUS заключается в том, чтобы обеспечить путешественников электроэнергией вдали от цивилизации. Для этого предлагается использовать отработанные аккумуляторные батареи электромобилей.

По материалам: electrik.info.

Диодный мост, принцип работы и схема

Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.

Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.

Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:

Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.

Схема и принцип работы диодного моста

На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.

Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.

В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.

  • Просмотров: 16953
  • Схема диодного моста с конденсатором

    Многие электронные приборы, для работы которых применяется переменный ток в 220 вольт, используют в своих схемах диодные мосты. Основной функцией данного устройства являются действия по выпрямлению переменного тока. Это связано с тем, что многие приборы рассчитаны на питание постоянного тока. Поэтому, и возникает постоянная необходимость в выпрямлении.

    Существует много вариантов подключения подобных устройств. Так, существует диодный мост, схема с конденсатором у которого, отличается от традиционной сборки. Дешевые полупроводниковые диоды позволяют повсеместно применять такие схемы.

    Работа диодного моста

    Принцип работы диодного моста заключается в следующем. На его вход, обозначенный переменным значком, производится подача переменного тока с изменяющейся полярностью. Частота изменений, как правило, совпадает с частотой в электрической сети. На выходе, где расположены положительный и отрицательный выводы, получается ток исключительно с одной полярностью.

    Однако, на выходящем токе будут наблюдаться пульсации с частотой, превышающей частоту переменного тока, подаваемого на вход. Такие пульсации являются нежелательными и препятствуют нормальной работе всей схемы. Для ликвидации таких пульсаций, применяются специальные фильтры. Для самых простых фильтров используются электролитические конденсаторы с большой емкостью. Таким образом, во всех блоках питания устанавливается диодный мост, схема с конденсатором которого позволяет эффективно сглаживать все пульсации выходящего тока.

    Чтобы повысить производительность выпрямляющих устройств, в их конструкции применяется схема диодной сборки. В ее состав входят четыре диода с одинаковыми параметрами, объединенные в одном общем корпусе. Для их соединения используется схема мостового выпрямителя. Такая сборка очень компактная, для всех диодов соблюдается одинаковый тепловой режим. Стоимость общей конструкции значительно ниже, чем у четырех отдельных диодов. Однако, существенным недостатком является необходимость замены всего диодного моста, при выходе из строя хотя-бы одного диода.

    Применение диодных мостов

    Эти схемы применяются, практически, во всех областях электроники, где для питания используется переменный ток однофазной электрической сети. Данный элемент имеет в своей конструкции блоки питания трансформаторного и импульсного типа. В качестве примера импульсного варианта можно привести блок питания компьютера.

    Диодные мосты также используются для устойчивой работы люминесцентных и энергосберегающих ламп. Они устанавливаются в светильники, взамен устаревших дросселей. Диодные приборы с большой мощностью входят в состав конструкции сварочных аппаратов.

    Простой конденсаторный выпрямитель

    Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

    Определение

    Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

    Различают два типа выпрямителей:

    Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

    Что значит стабилизированное и нестабилизированное напряжение?

    Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

    Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

    Выходное напряжение

    Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

    Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

    Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

    Амплитудное напряжение в сети 220В равняется:

    Схемы

    Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

    Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

    Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

    Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

    О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

    1. Выпрямитель по схеме Гретца или диодный мост;

    2. Выпрямитель со средней точкой.

    Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

    Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

    Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

    По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

    Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

    Сглаживание пульсаций

    Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

    Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

    Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

    Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

    Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

    Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

    где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

    Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

    Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

    Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

    Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

    Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

    Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

    Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

    Как сделать блок питания своими руками?

    Простейший блок питания постоянного тока состоит из трёх элементов:

    Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью — Как устроен компьютерный блок питания.

    Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

    У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

    Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

    Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

    Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

    Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

    Входное напряжение должно превышать выходное на 2-2.5В.

    Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

    Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

    На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

    Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

    Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

    Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

    Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

    Регулируемые блоки питания

    Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

    Вот более наглядная схема для сборки регулируемого блока питания.

    Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

    В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

    Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

    Кстати похожей схемой регулируют и сварочный ток:

    Заключение

    Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

    Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

    По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

    Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

    Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

    знаю что паралельно диодному мосту должен стоять сглаживающий конденсатор
    — как правильно подобрать номинал сглаживающего конденсатора в микрофарадах “mF” паралельно диодному мосту .
    — интуитивно подозревая что конденсатор должен быть большой емкости. ничего под рукой не оказалось как три конденсатора по 250мФ (400В) подключил паралельно. на выходе после диодного моста из 12В получилось 16В (что очень нежелательно в моем случае, нужны стабильные 12 и 24VDC)
    ВОПРОС; как емкость конденсатора влияет на выходное напряжение после моста ? есть ли готовая формула расчета .

    и еще вопрос по теме; — почему при паралельном подключении 6-ти гидроклапанов к одному трансформатору, питание в сети поднимается с 12В-вплоть до 17-тиVDC, а если подключать на обмотку трансформатора 24В питание поднимается вплоть до 34VDC . где искать грабли ? может отделить катушки клапанов дополнительными диодами на каждую обмотку .

    • Вопрос задан более трёх лет назад
    • 50426 просмотров

    На самом деле вам стоило бы почитать какую-нибудь книжку по электротехнике.

    Если вкратце, то переменное напряжение в среднем в сети переменного тока равно нулю, потому что оно постоянно меняет знак, и меняется от одного амплитудного значения до другого. Поэтому в сети переменного тока принято измерять действующее значение напряжения, которое есть , потому что такое значение согласуется по энергетическим характеристикам с постоянным напряжением той же величины.

    Однако после выпрямления тока, на выходе получается пульсирующее напряжение с амплитудой . Если таким напряжение заряжать конденсатор, не подключая нагрузку, то конденсатор зарядится до этого самого амплитудного значения. В вашем случае , что вы и наблюдаете.

    Расчет емкости конденсатора фильтра зависит от величины нагрузки и допустимого уровня пульсации. Ваш выпрямленный ток грубо можно представить как сумму постоянного и переменного тока. Переменная составляющая может проходить через конденсатор, который представляет для нее некоторое сопротивление. Для того, чтобы эффективно давить переменную составляющую, необходимо, чтобы сопротивление конденсатора для переменного тока было значительно меньше сопротивления нагрузки, которую создают потребители.

    Тут можно посчитать емкостное сопротивление, нужно иметь в виду, что после диодного моста частота переменной составляющей тока будет 100Гц

    Без детального описания схемы дальше сказать что-то будет сложно. Если вы не разбираетесь в схемотехнике, лучше купить готовый блок питания.

    Принцип работы диодного моста. Как проверить диодный мост.

    Диодный мост – простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать принцип работы диодного моста и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

    Принцип работы

    Давайте разберем, как работает данное устройство. Оно собирается из диодов – элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера – в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

    Состав и принцип работы диода

    У диода имеется два контакта – анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

     

    Классический диодный мост

    Стандартная схема диодного моста выпрямителя содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два – запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

    Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.

    Принцип работы классического моста

    Изучая, как собрать диодный мост, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел.

    Посмотрите обзорное видео с канала “Радиолюбитель TV”.

     

    Как проверить диод

    Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.

    Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:

    • пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
    • обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
    • утечка. В этом случае диод проводит незначительный обратный ток.

    При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.

    Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B.

    Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.

    Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.

    Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.

    Подключив щупы, к аноду (красный +), а к катоду (черный ), мы видим значения на дисплее — это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.

    Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.

    На этом процедура проверки диода закончена – диод исправен.

    Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.

    Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.

    Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.

    Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке.

    Теперь мы знаем, как проверить диод, можем приступить к проверке диодного моста.

    Как проверить диодный мост

    Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.

    Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе.  Она поможет протестировать каждый диод и не запутаться с выводами.

    Тест диода D1 – выводы 1;3.

    Тест диода D2 – выводы 3;4.

    Тест диода D3 – выводы 1;2.

    Тест диода D4 – выводы 2;4.

    В данном случае все диоды работают исправно, такой диодный мост рабочий.

    Также вы можете посмотреть видео по проверке диодного моста с канала “ElectronicsClub”

    Диодный мост схема 220 вольт

    Диодный мост

    Схема диодного моста

    Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

    Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

    Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


    Схема диодного моста

    Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

    В железе это выглядит следующим образом.


    Диодный мост из отдельных диодов S1J37

    Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

    Как работает диодный мост?

    Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

    ») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

    Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

    Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

    Обозначение диодного моста на схеме.

    На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

    Диодная сборка.

    Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

    Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

    Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

    ». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

    Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

    Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

    Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

    Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

    В реальности сборка диодного моста может выглядеть вот так.


    Диодная сборка KBL02 на печатной плате
    Диодная сборка RS607 на плате компьютерного блока питания

    А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

    Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

    Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

    Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


    Условное изображение диодного моста и диодной сборки

    Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

    На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

    Где применяется схема диодного моста?

    Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

    Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

    В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

    Диодный мост

    Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

    Обозначение на схеме

    Диодный мост на схемах выглядит подобным образом:

    Иногда в схемах его обозначают еще так:

    Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “

    ”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

    Принцип работы

    Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

    Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

    Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

    На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

    Практические опыты

    Для начала возьмем простой диод.

    Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

    Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

    На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.

    Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

    3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

    Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

    Припаяем к одному концу вторичной обмотки трансформатора наш диод.

    Цепляемся снова щупами осциллографа

    Смотрим на осциллограмму

    А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

    Находим еще три таких диода и спаиваем диодный мост.

    Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

    С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

    Вот, теперь порядок.

    Виды диодных мостов

    Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

    Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”

    “, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.

    Существует множество видов диодных мостов в разных корпусах

    Есть даже автомобильный диодный мост

    Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

    В основном трехфазные диодные мосты используются в силовой электронике.

    Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

    Как проверить диодный мост

    1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

    2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “

    ”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.

    Значит, импортный диодный мост исправен.

    Резюме

    Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

    Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

    Схема и принцип действия диодного моста

    Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.

    Принцип действия полупроводникового диода

    Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

    Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

    Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

    Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

    • повышенная степень пульсаций выпрямленного напряжения;
    • низкий КПД;
    • большой вес трансформатора и его нерациональное использование.

    Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

    Схема диодного моста

    Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.

    Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.

    Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.

    Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

    Выпрямитель на основе диодного моста

    Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

    Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

    С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

    Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

    Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

    Диодный мост: схема подключения и назначение

    В электротехнике существует несостыковка. С одной стороны, передавать энергию на большие расстояния удобнее, если она имеет форму переменного напряжения. С другой, для питания смартфонов, светодиодов в лампочках, плат в телевизорах и подобной бытовой техники требуется постоянный ток. Данную проблему успешно решает такое семейство радиодеталей, как выпрямительные диоды.

    Что такое диоды

    Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.

    Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.

    Интересно. Диоды обладают паразитной чувствительностью к температуре и свету. Прозрачные выпрямители в стеклянном корпусе могут использоваться как датчики освещённости. Германиевые диоды (прим. Д9Б) подходят в качестве термочувствительного элемента. Собственно из-за сильной зависимости свойств этих элементов от температуры их и перестали производить.

    Однофазный и трёхфазный диодный мост

    Существует две основные разновидности выпрямляющих сборок:

    • Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т.е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
    • Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.

    Принцип работы диодного моста

    Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.

    Выпрямитель

    Полученное после диодного моста напряжение имеет форму синусоиды, у которой отрицательная составляющая отражена относительно оси времени. Проще говоря, оно имеет форму холмов и называется пульсирующим. Такое напряжение положительное. Не содержит моментов, когда ток не течёт. Но всё же оно нестабильное. Например, в точке «a» оно рано 0 вольт, а в «b» – имеет максимальное значение. Данный выпрямитель нельзя считать законченным.

    Для решения этой проблемы требуется сглаживающий электролитический конденсатор. На плате он обычно располагается там же, где и диодная сборка. Ёмкость накапливает энергию в те моменты, когда она имеет пиковые значения (точка b), и отдаёт её в моменты провалов (a). На выходе получается прямая линия – полноценный постоянный ток, пригодный для питания последующих электронных компонентов, процессоров, микросхем и т.п.

    Преимущества двухполупериодного диодного моста

    Полный мост, также называемый двухполупериодным выпрямителем, по ряду характеристик лучше, чем просто одиночный диод. Объясняется это тем, что он даёт возможность:

    1. снизить подмагничивание трансформатора, после которого стоит двухполупериодный выпрямитель;
    2. снять с выхода напряжение с удвоенной частотой, которое в итоге проще сгладить;
    3. повысить КПД трансформатора, на вторичной обмотке которого установлен полный диодный мост.

    Недостатки полного моста

    У полноценного двухполупериодного моста имеются недостатки:

    1. Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
    2. При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.

    Конструкция

    Схема любого выпрямительного моста включает в себя диоды. Они могут быть по отдельности распаяны на печатную плату или находиться в одном корпусе. Касаемо размера выпрямители бывают миниатюрными, например, импортные MB6S или советские КЦ405А. Последние в народе именуют «ка-цэшками» или «шоколадками».

    Встречаются образцы с внушительными габаритами. Например, трёхфазный выпрямительный мост китайского производства. Прибор предназначен для токов в сотни ампер, поэтому имеет винтовой крепёж под силовые провода и плоскую металлическую теплопроводящую поверхность с отверстиями для фиксации на радиаторе охлаждения.

    Маркировка выпрямителей

    Не существует общепринятых правил, согласно которым производители маркируют свои диодные мосты. Каждый вправе называть своё изделие так, как считает нужным, т.е. по своей собственной номенклатуре.

    Однако у большинства из этих деталей есть схожие признаки, помогающие визуально определить назначение их выводов. На фото трёхфазного моста (см. выше) отдельно выделен символ переменного тока – волнистая линия. Он указывает на то, что к этому контакту подключается входное синусоидальное напряжение. Также на некоторых моделях мостиков входные выводы помечаются буквами AC (Alternative Current), указывающими на переменный ток. При этом выходные контакты, с которых снимается постоянный ток, обозначаются символами DC (Direct Current) или традиционными «+» и «-». Дополнительно на некоторых выпрямителях со стороны плюса «подпилен» один из углов. Также на «+» может указывать и удлинённый вывод. Подобная маркировка свойственна многим электронным компонентам и называется ключом.

    Диодный мостик своими руками

    Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.

    Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.

    Выбор типа сборки

    Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:

    • Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
    • Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
    • Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.

    Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.

    Проверка элементов

    В большинстве случаев для проверки выпаивать мостик из платы не требуется. Тестировать его следует точно так же, как 4 p-n перехода с подключением по схеме диодного моста. Данное измерение настолько распространено, что его возможность реализована в любом мультиметре. Прибор для теста нужно переключить в режим диодной прозвонки.

    Падение напряжения в прямом направлении на исправном выпрямительном диоде составляет 500-700 мВ. В обратном – прибор отобразит «1». Сгоревшая деталь чаще всего показывает в обоих направлениях «0», т.е. короткое замыкание. Реже бывает полный обрыв элемента (также в обе стороны). Все замеры следует повторить для каждого входящего в состав моста диода. Итого 8 измерений, т.е. 4 в прямом направлении и 4 – в обратном. Если тестируется диод Шоттки, то этот параметр составляет 200-400 мВ.

    Использование барьера Шоттки

    Применение диода Шоттки оправдано в двух случаях. Во-первых, когда нужно выпрямить высокочастотный ток. Барьер Шоттки идеально подходит для подобной задачи, ведь он имеет низкую ёмкость перехода и, соответственно, является быстродействующим. Во-вторых, когда требуется выпрямить большой ток в десятки или сотни ампер. В этом случае деталь отлично себя показывает ввиду низкого падения напряжения и малого тепловыделения.

    Диодные мосты в мире электроники играют роль согласующего элемента. С их помощью можно подключать устройства, требующие постоянный ток, к сети удобного для передачи переменного напряжения. Подобных устройств очень много в быту, они крайне важны для комфортной жизни человека.

    Видео

    Выпрямитель для светодиодной ленты на 220В (LEDplug)

    У нас в наличии два типа выпрямителей для светодиодной ленты типа 5050 и для светодиодной ленты типа 3528. Они отличаются внешними разъемами, но технически практически идентичны. Номер (тип) ленты — это тип SMD светодиодов, на которых построена лента.

    Необходимость в использовании коннектора-выпрямителя при подключении к сети светодиодных лент на 220 вольт обусловлена тем фактом, что светодиодам для нормальной работы требуется постоянный ток.

    Техническое описание коннектора-выпрямителя

    Коннектор для подключения светодиодных лент соответствующего питающего напряжения к сети переменного тока с напряжением 220В и частотой 50Гц (бытовая электросеть) представляет собой комбинированное устройство, основой которого является элементарный выпрямитель, построенный по схеме диодного моста (рис. 1).

    Рис. 1. Принцип работы диодного моста.

    Диодный мост — это электронная схема, предназначенная для выпрямления переменного тока в пульсирующий постоянный. В результате преобразования, на выходе диодного моста получается пульсирующее напряжение вдвое большей частоты, чем на входе, но стабильной полярности. В коннекторе не предусмотрено иных электронных компонентов, таких как конденсатор, обычно используемых для сглаживания пульсаций в блоках питания электронных приборов.

    Диодный мост выполнен в виде монолитной диодной сборки размером 23х23мм и помещен в пластиковый корпус, который одновременно является и внешним изолятором (рис. 2). К выводам диодной сборки припаиваются провода входной (переменного тока) и выходной (постоянного тока) цепей.

    Рис. 2. Диодный мост и коннектор в сборе.

    Технические параметры диодного моста

    • Максимальное постоянное обратное напряжение, В: 600
    • Максимальное импульсное обратное напряжение, В: 600
    • Максимальный прямой (выпрямленный за полупериод) ток, А: 4
    • Максимальный допустимый прямой импульсный ток, А: 80
    • Максимальный обратный ток, мкА: 10
    • Максимальное прямое напряжение, В при Iпр., А= 2: 1,05
    • Максимальное время обратного восстановления, мкс: 500
    • Рабочая температура, С: -40…150
    • Способ монтажа: пайка
    • Количество фаз: 1

    Соединение выпрямителя и светодиодной ленты

    Входная цепь, как правило, комплектуется электрической вилкой (рис. 3) типа А (слева) или типа С (справа), предназначенной, в основном, для проверки работоспособности. Обычно при монтаже в электросеть вилка обрезается, и монтаж производится путем присоединения зачищенных проводов коннектора к токоподводящей цепи.

    Рис. 3. Типы вилок, используемых в выпрямителе.

    Подключение (рис. 4) коннектора к светодиодной ленте 1, рассчитанной на постоянный ток напряжением 220В производится посредством разъема 3 через вилку 2, которая входит в комплект коннектора. Вилка 2 подключается к светодиодной ленте таким образом, чтобы обеспечить надежный контакт с токопроводящими шинами ленты (рис. 7). Дополнительной изоляции соединения не требуется.

    Рис. 4. Порядок подключения светодиодной ленты 220В к выпрямителю.

    В комплектацию выпрямителя также входит силиконовая заглушка, с помощью которой изолируется свободный конец светодиодной ленты (рис. 5), закрывая токопроводящие шины на конце ленты.

    Рис. 5. Оконечная силиконовая заглушка. Задайте вопрос У Вас остались вопросы?

    Или кликните на кнопку слева и задайте свой вопрос — подробный ответ Вы получите очень быстро.

    Что такое диодный мост и как он работает?

    Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

    Устройство и принцип работы

    Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

    Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

    Рис. 1. Принцип работы диодного моста

    Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

    Поэтому работа выпрямительного устройства будет иметь такие этапы:

    • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
    • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
    • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
    • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

    В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

    Обозначение на схеме и маркировка

    На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

    Рис. 2. Обозначение на схеме

    Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

    Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

    Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

    Разновидности диодных мостов

    В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

    Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

    Рис. 3. Схема трехфазного диодного моста

    Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

    Рис. 4. Напряжение выпрямленное трехфазным мостом

    Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

    Технические характеристики

    При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

    Среди таких характеристик наиболее значимыми для диодного моста являются:

    • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
    • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
    • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
    • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
    • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

    Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

    Преимущества и недостатки

    Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

    • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
    • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
    • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
    • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

    К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.

    Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

    Практическое применение

    На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

    Примеры схем с диодным мостом и их описание

    Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

    Рис. 5. Схема зарядного устройства

    Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

    Рис. 6. Схема карманного фонаря

    На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

    Пример схемы сварочного агрегата

    Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

    Что такое диодный мост [+ схема подключения], для чего нужен и как работает

    Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

    Содержание статьи

    Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

    Схема диодного моста из 4 диодов

    Что такое диодный мост и из каких элементов он состоит

    Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

    Устройство диода

    Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

    Как работает диодный мост: для чайников, просто и коротко

    На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

    Обозначение диодного моста на схеме

    Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

    Работа диодного моста

    На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

    Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

    На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

    Чем можно заменить диодный мост-сборку

    Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

    • меньшей площади, занимаемой сборкой на схеме;
    • упрощению работы сборщика схемы;
    • единому тепловому режиму для всех четырех полупроводниковых устройств.

    Различные варианты сборки диодного моста

    У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

    Для чего нужен диодный мост в генераторе автотехники

    Диодный мост в генераторе

    Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

    • маломощные – до 300 мА;
    • средней мощности – от 300 мА до 10 А;
    • высокомощные – выше 10 А.

    Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

    Чем заменить диодный мост в генераторе

    В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

    • на плату попала жидкость;
    • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
    • изменение положения полюсов контактов на АКБ.

    Видео: принцип работы диодного моста


    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Другие материалы по теме


    Анатолий Мельник

    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


    ВЫПРЯМИТЕЛИ

       В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

    Фото трансформаторный блок питания

       Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

    Фотография трансформатора

       Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

    Однополупериодный выпрямитель


    Схема однополупериодный выпрямитель

       Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

    Выпрямленный ток после однополупериодного выпрямителя

       На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

    Электролитический конденсатор большой емкости

        Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

    Выпрямленный ток в однополупериодном выпрямителе после конденсатора

    Двухполупериодный выпрямитель со средней точкой


    Схема двухполупериодный выпрямитель со средней точкой

       Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

    График двухполупериодного выпрямителя

    Двухполупериодный выпрямитель, мостовая схема


    Схема двухполупериодный выпрямитель мостовая схема

       И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

    Диодный мост рисунок

       Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

    Объяснение работы диодного моста

       Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

    График мостого выпрямителя

       При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

    Еще одно изображение диодного моста

       Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

    Фото импортного диодного моста

       На фото далее изображен отечественный диодный мост КЦ405.

    Фото диодный мост кц405

    Трехфазные выпрямители

       Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

    Фото трехфазного трансформатора

       Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

    Схема Миткевича

       Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

    Схема Ларионова

       Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

       Форум

       Форум по обсуждению материала ВЫПРЯМИТЕЛИ

    Схемы сглаживания конденсаторов

    и расчеты »Электроника

    Резервуарные конденсаторы используются для сглаживания необработанной выпрямленной формы волны в источнике питания – важно выбрать правильный конденсатор с правильным значением и номинальным током пульсации.


    Пособие по схемам источника питания и руководство Включает:
    Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


    В источнике питания, будь то линейный источник питания или импульсный источник питания, использующий источник питания переменного тока и диодные выпрямители, необработанный выпрямленный выход обычно сглаживается с помощью накопительного конденсатора перед подачей на какие-либо регуляторы или другие подобные электронная схема.

    Алюминиевые электролитические конденсаторы

    идеально подходят для работы в качестве сглаживающих конденсаторов, так как многие электролитические компоненты способны обеспечивать достаточно высокую емкость и выдерживать уровень пульсаций тока, необходимый для сглаживания формы волны.

    По сути, схема сглаживания заполняет основные провалы в необработанной выпрямленной форме волны, так что схема линейного регулятора или импульсного источника питания может работать правильно. Они изменяют форму волны от той, которая изменяется от нуля до пикового напряжения в течение цикла входящей формы волны мощности, и меняют ее на такую, где изменения намного меньше.По сути, они сглаживают форму волны, и отсюда и название.

    Поскольку сглаживающие конденсаторы используются как в источниках питания с линейным стабилизатором, так и в импульсных источниках питания, они составляют важную часть многих из этих электронных схем.

    Двухполупериодный выпрямитель со сглаживающим конденсатором

    Основы сглаживания конденсатора

    Конденсаторное сглаживание используется для большинства типов источников питания, будь то линейный регулируемый источник питания, импульсный источник питания или даже просто сглаженный и нерегулируемый источник питания.

    Типичный электролитический конденсатор, используемый для сглаживания

    Необработанный постоянный ток, подаваемый диодным выпрямителем сам по себе, будет состоять из серии полусинусоидальных волн с напряжением, изменяющимся от нуля до √2-кратного среднеквадратичного напряжения (без учета диодных и других потерь).

    Форма волны такого рода не будет использоваться для питания схем, потому что любые аналоговые схемы будут иметь огромный уровень пульсации, наложенной на выход, и любые цифровые схемы не будут работать, потому что питание будет отключаться каждые полупериод.

    Конденсаторное сглаживание обеспечивает правильную работу следующих каскадов линейно регулируемого источника питания или импульсного источника питания.

    Для сглаживания выхода выпрямителя используется накопительный конденсатор, размещенный на выходе счетчика параллельно с нагрузкой.

    Сглаживание работает, потому что конденсатор заряжается, когда напряжение выпрямителя превышает напряжение конденсатора, а затем, когда напряжение выпрямителя падает, конденсатор обеспечивает требуемый ток из своего накопленного заряда.

    Таким образом, конденсатор может обеспечивать заряд, когда он не поступает от выпрямителя, и, соответственно, напряжение изменяется значительно меньше, чем при отсутствии конденсатора.

    Конденсаторное сглаживание не обеспечивает полной стабильности напряжения, всегда будут некоторые колебания напряжения. Фактически, чем выше емкость конденсатора, тем больше сглаживание, а также чем меньше потребляемый ток, тем лучше сглаживание.

    Сглаживающее действие накопительного конденсатора

    Следует помнить, что единственный путь разрядки конденсатора, помимо внутренней утечки, – это через нагрузку к выпрямителю / системе сглаживания.Диоды предотвращают обратный ток через трансформатор и т. Д.

    Еще один момент, о котором следует помнить, заключается в том, что сглаживание конденсатора не дает какой-либо формы регулирования, и напряжение будет варьироваться в зависимости от нагрузки и любых изменений на входе.

    Регулировка напряжения может быть обеспечена линейным регулятором или импульсным источником питания.

    Емкость сглаживающего конденсатора

    Выбор емкости конденсатора должен соответствовать ряду требований. В первом случае значение должно быть выбрано так, чтобы его постоянная времени была намного больше, чем временной интервал между последовательными пиками выпрямленного сигнала:

    Где:
    R нагрузка = общее сопротивление нагрузки для источника питания
    C = значение емкости конденсатора в фарадах
    f = частота пульсаций – это будет вдвое больше линейной частоты, чем используется двухполупериодный выпрямитель.

    Сглаживающий конденсатор пульсации напряжения

    Поскольку на выходе выпрямителя, использующего схему сглаживающего конденсатора, всегда будет некоторая пульсация, необходимо иметь возможность оценить приблизительное значение. Чрезмерное указание емкости конденсатора приведет к увеличению стоимости, размера и веса, а недостаточное указание приведет к снижению производительности.

    Пульсации от пика до пика для выходного сигнала сглаживающего конденсатора в источнике питания (полная волна)

    На приведенной выше диаграмме показаны пульсации для двухполупериодного выпрямителя со сглаживанием конденсатора.Если бы использовался полуволновой выпрямитель, то половина пиков была бы потеряна, а пульсации были бы примерно вдвое больше напряжения.

    Для случаев, когда пульсации мала по сравнению с напряжением питания – что почти всегда имеет место – можно рассчитать пульсации, зная условия цепи:

    Двухполупериодный выпрямитель

    Однополупериодный выпрямитель

    Эти уравнения обеспечивают более чем достаточную точность. Хотя разряд конденсатора для чисто резистивной нагрузки является экспоненциальным, погрешность, вносимая линейным приближением, очень мала для низких значений пульсаций.

    Также стоит помнить, что вход регулятора напряжения представляет собой не чисто резистивную нагрузку, а нагрузку с постоянным током. Наконец, допуски электролитических конденсаторов, используемых для сглаживающих схем выпрямителя, велики – в лучшем случае ± 20%, и это скроет любые неточности, вносимые допущениями в уравнениях.

    Пульсация тока

    Две из основных характеристик конденсатора – это его емкость и рабочее напряжение. Однако для приложений, где могут протекать большие уровни тока, как в случае сглаживающего конденсатора выпрямителя, важен третий параметр – его максимальный ток пульсаций.

    Ток пульсации не равен току питания. Есть два сценария:

    • Ток разряда конденсатора: В цикле разряда максимальный ток, подаваемый конденсатором, возникает, когда выходной сигнал схемы выпрямителя падает до нуля. В этот момент весь ток в цепи подается конденсатором. Это равно полному току цепи.

      Пиковый ток, подаваемый конденсатором в фазе разряда

    • Ток зарядки конденсатора: В цикле зарядки сглаживающего конденсатора конденсатор должен заменить весь потерянный заряд, но этого можно добиться только тогда, когда напряжение выпрямителя превышает напряжение на сглаживающем конденсаторе.Это происходит только в течение короткого периода цикла. Следовательно, ток в этот период намного выше. Чем больше конденсатор, тем лучше он уменьшает пульсации и тем короче период заряда.

      Более короткое время зарядки приводит к очень большим уровням пикового тока, поскольку сглаживающий конденсатор должен поглотить достаточный заряд для периода разряда за очень короткое время.

      Период, в течение которого конденсатор источника питания заряжается

    Пи-секционные сглаживающие сети

    В некоторых приложениях линейный регулятор напряжения не будет использоваться, может потребоваться улучшенная форма сглаживания.Это может быть обеспечено использованием двух конденсаторов и последовательной катушки индуктивности или резистора.

    Подход сглаженного источника питания используется в некоторых высоковольтных системах и в некоторых других специализированных областях, но он не так распространен, как источники питания с линейным регулированием и импульсные источники питания, которые обеспечивают гораздо лучшее регулирование и сглаживание.

    Этот подход также можно увидеть во многих старинных беспроводных устройствах, где использование линейно регулируемого источника питания было невозможно.

    Пи-секционный сглаживающий фильтр

    Существует два варианта сглаживающей системы Пи-секции.При наличии двух конденсаторов между линией и землей последовательным элементом служил индуктор или резистор. Катушка индуктивности стоила намного дороже и обеспечивала лучшую производительность, но резистор был гораздо более дешевым вариантом, хотя он рассеивал больше энергии.

    Сглаживающие конденсаторы являются важными элементами как линейных источников питания, так и импульсных источников питания, и поэтому они широко используются.

    При выборе емкостного конденсатора для сглаживания в источниках питания важно не только значение емкости для обеспечения требуемого снижения пульсации напряжения, но также очень важно гарантировать, что номинальный ток пульсации конденсатора не будет превышен.Если потребляется слишком большой ток, конденсатор нагревается и его ожидаемый срок службы сокращается, или в крайних случаях он может выйти из строя, иногда катастрофически.

    Другие схемы и схемотехника:
    Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
    Возврат в меню проектирования схем. . .

    Схема мостового выпрямителя

    – Конструктивные особенности и советы »Электроника

    Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с отводом от средней точки.

    Цепи диодного выпрямителя

    Включают: Цепи диодного выпрямителя
    Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


    Мостовой выпрямитель – это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

    Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.

    Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.

    Типовой мостовой выпрямитель для монтажа на печатной плате

    Цепи мостового выпрямителя

    Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре. Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.

    Двухполупериодный выпрямитель с использованием мостового выпрямителя

    Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.

    Электронные компоненты

    с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.

    Чтобы увидеть, как работает двухполупериодный выпрямитель на мостовых диодах, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны.

    Двухполупериодный мостовой выпрямитель, показывающий протекание тока

    В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.

    Эти электронные компоненты принимают заряд во время высоковольтных частей формы волны, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.

    Примечание по сглаживанию конденсатора источника питания:
    Конденсаторы

    используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания для сглаживания выпрямленной формы волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.

    Подробнее о Конденсаторное сглаживание.

    Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.

    Период, в течение которого конденсатор источника питания заряжается

    При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.

    Мостовые выпрямители

    Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов легко может быть выполнено как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.

    Схема мостового выпрямителя и маркировка

    В качестве альтернативы мостовые выпрямители поставляются в виде отдельных электронных компонентов, содержащих четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и – очевидны.

    Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.

    Некоторые мостовые выпрямители заключены в более крупные корпуса и предназначены для установки на радиаторе. Поскольку эти выпрямители рассчитаны на пропускание значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.

    Рекомендации по проектированию мостового выпрямителя

    При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов:

    • Падения напряжения: Нельзя забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 вольт от пикового напряжения на входе переменного тока.
    • Рассчитайте количество тепла, рассеиваемого выпрямителем: Напряжение на диодах будет падать минимум на 1,2 вольта (при использовании стандартного кремниевого диода), которое будет повышаться по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.

      Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.

      Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.

    • Пиковое обратное напряжение: Очень важно следить за тем, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя.

      Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с трансформатором с центральным ответвлением. Если пренебречь падением диода, мостовому выпрямителю требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования данной конфигурации.

      Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V сек , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение.

      Двухполупериодный мостовой выпрямитель, показывающий обратное пиковое напряжение

      Предполагая идеальные диоды, на которых нет падения напряжения – хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение от трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.

    Мостовые выпрямители – идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.

    Мостовой выпрямитель с разделенным питанием

    Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным отводом, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.

    Двухполупериодный мостовой выпрямитель с двойным питанием

    Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.

    Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.

    Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.

    Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.

    Другие схемы и схемотехника:
    Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
    Возврат в меню проектирования схем.. .

    Мостовой выпрямитель с фильтром

    “Это статья про мостовой выпрямитель с фильтром. Если ты хочешь чтобы прочитать только про мостовой выпрямитель посетите: мостовой выпрямитель “

    В центр нажат двухполупериодный выпрямитель, как положительная, так и отрицательная половина циклы исправлены. Так что нет напряжения тратится на выходе.Кроме того, выход постоянного тока производимый двухполупериодным выпрямителем с центральным отводом, более плавный чем выход полуволнового выпрямителя.

    Однако Двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток. Что трансформатор, используемый в двухполупериодном выпрямитель очень дорог и занимает много места. Итак, чтобы преодолев этот недостаток, был разработан выпрямитель нового типа. разработан под названием мост выпрямитель.

    В мост выпрямитель, трансформатор не нужен. Однако два лишних диоды (всего четыре диода) необходимы для работы моста выпрямитель.

    общая стоимость мостового выпрямителя невысока по сравнению с двухполупериодный выпрямитель с отводом по центру.

    Нравится двухполупериодный выпрямитель с центральным ответвлением, прямой выход Ток (DC) мостового выпрямителя содержит небольшой рябь.Эту небольшую рябь можно уменьшить, если использовать фильтр на выходе.

    фильтр преобразует пульсирующий постоянный ток (DC) в чистый Постоянный ток (DC). Фильтр состоит из комбинации компонентов, таких как конденсаторы, резисторы, и индукторы.

    В в этом руководстве мостовой выпрямитель, состоящий из конденсатора фильтр объяснен.

    Нравится двухполупериодный выпрямитель с отводом по центру, мостовой выпрямитель также исправляет как положительные, так и отрицательные полупериоды входной сигнал переменного тока. Однако строительство моста выпрямитель отличается от двухполупериодного с отводом по центру выпрямитель. В мостовом выпрямителе диоды расположены по схеме мостовой схемы.

    мостовой выпрямитель состоит из четырех диодов а именно D 1 , D 2 , D 3 и D 4 . Вход сигнал подается на две клеммы A и B, в то время как Выход постоянного тока получается через нагрузочный резистор R L . подключен между клеммами C и D.

    пульсирующий выход постоянного тока, полученный через нагрузочный резистор R L содержит мелкую рябь.Чтобы уменьшить эту рябь, мы используем фильтр на выходе.

    Фильтр, обычно используемый в мостовом выпрямителе, представляет собой конденсатор. фильтр. На приведенной ниже принципиальной схеме конденсаторный фильтр подключается через нагрузочный резистор R L ..

    Когда подается входной сигнал переменного тока в течение положительного полупериода оба диода D 1 и D 3 передние пристрастный.При этом диоды D 2 и D 4 имеют обратное смещение.

    Вкл. с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 смещены вперед. В то же время, диоды D 1 и D 3 с обратным смещением.

    Таким образом, мостовой выпрямитель позволяет использовать как положительную, так и отрицательную половину циклы входного сигнала переменного тока.

    Выход постоянного тока, создаваемый мостовым выпрямителем, не является чистым постоянным током. но пульсирующий постоянный ток. Этот пульсирующий постоянный ток содержит как переменный ток, так и Компоненты постоянного тока.

    Компоненты переменного тока колеблются во времени, в то время как постоянный ток компоненты остаются неизменными во времени. Итак, AC компоненты, присутствующие в пульсирующем постоянном токе, являются нежелательными сигнал.

    конденсатор фильтр, присутствующий на выходе, удаляет нежелательный переменный ток составные части. Таким образом, на нагрузочном резисторе получается чистый постоянный ток. Р Л .

    Как работает мостовой выпрямитель – шаг за шагом

    Мостовые выпрямители

    Что такое выпрямитель?

    В электронной промышленности одним из наиболее популярных применений полупроводниковых диодов является преобразование сигнала переменного тока (AC) любой частоты, которая обычно составляет 60 или 50 Гц, в сигнал постоянного тока (DC).Этот сигнал постоянного тока может использоваться для питания электронных устройств, а не батарей. Схема, которая преобразует переменный ток в сигнал постоянного тока, обычно состоит из особого набора блокированных диодов и известна как выпрямитель. В схемах питания обычно используются два типа выпрямительных схем – полуволновые и двухполупериодные. Полуполупериодные выпрямители допускают только половину цикла, тогда как двухполупериодные выпрямители допускают прохождение как верхней, так и нижней половины цикла, преобразуя нижнюю половину в ту же полярность, что и верхняя.Это различие между ними показано на рисунке 1.

    Рисунок 1: Разница между выходами полу- и двухполупериодных выпрямителей

    Между двумя типами двухполупериодный выпрямитель более эффективен, поскольку он использует полный цикл входящей формы волны. Существует два типа двухполупериодных выпрямителей: двухполупериодный выпрямитель с центральным ответвлением, для которого требуется трансформатор с центральным ответвлением, и мостовой выпрямитель, для которого не требуется трансформатор с центральным ответвлением. В этой статье будет обсуждаться мостовой выпрямитель, поскольку он является наиболее популярным и обычно поставляется в виде предварительно собранных модулей, что упрощает их использование.

    В мостовых выпрямителях

    используются четыре диода, которые грамотно расположены для преобразования напряжения питания переменного тока в напряжение питания постоянного тока. Выходной сигнал такой схемы всегда имеет одну и ту же полярность, независимо от полярности входного сигнала переменного тока. На рисунке 2 изображена схема мостового выпрямителя с блокированными диодами по мостовой схеме. Сигнал переменного тока подается на входные клеммы a и b, а выходной сигнал наблюдается через нагрузочный резистор R1.

    Рисунок 2 Мостовой выпрямитель с нагрузочным резистором

    Давайте посмотрим, как эта схема выпрямителя реагирует на сигнал переменного тока с изменением полярности в каждом цикле:

    1. В первом положительном полупериоде сигнала переменного тока диоды D2 и D3 смещаются в прямом направлении и начинают проводить.В то же время диоды D1 и D4 будут иметь обратное смещение и не будут проводить. Ток будет протекать через нагрузочный резистор через два диода с прямым смещением. Напряжение на выходе будет положительным на клемме d и отрицательным на клемме c.
    2. Теперь, во время отрицательного полупериода сигнала переменного тока, диоды D1 и D4 будут смещены в прямом направлении, а диоды D2 и D3 будут смещены в обратном направлении. Положительное напряжение появится на аноде D4, а отрицательное напряжение будет приложено к катоду D1.Здесь стоит отметить, что ток, протекающий через нагрузочный резистор, будет иметь то же направление, что и при положительном полупериоде. Следовательно, независимо от полярности входного сигнала полярность на выходе всегда будет одинаковой. Мы также можем сказать, что отрицательный полупериод сигнала переменного тока был инвертирован и проявляется как положительное напряжение на выходе.

    Как конденсатор работает как фильтр?

    Тем не менее, это выходное напряжение одной полярности не является чистым напряжением постоянного тока, поскольку оно пульсирующее, а не прямолинейное по своей природе.Эта проблема быстро решается путем подключения конденсатора параллельно нагрузочному резистору, как показано на рисунке 3. В этой новой конструкции положительный полупериод заряжает конденсатор через диоды D2 и D3. А во время отрицательного полупериода конденсатор перестанет заряжаться и начнет разряжаться через нагрузочный резистор.

    Рисунок 3 Мостовой выпрямитель с нагрузочным резистором и фильтрующим конденсатором

    Этот процесс известен как фильтрация, и конденсатор действует как фильтр.Конденсатор улучшил пульсирующий характер выходного напряжения, и теперь на нем будет только пульсация. Эта форма сигнала теперь намного ближе к форме чистого напряжения постоянного тока. Форму сигнала можно дополнительно улучшить, используя другие типы фильтров, такие как L-C-фильтр и круговой фильтр.

    Типы мостовых выпрямителей

    Только что обсужденный мостовой выпрямитель является однофазным, однако его также можно расширить до трехфазного выпрямителя. Эти два типа можно разделить на полностью управляемые, полууправляемые или неуправляемые мостовые выпрямители.Схема, которую мы только что обсуждали, является неконтролируемой, поскольку мы не можем контролировать смещение диода, но если все четыре диода заменить тиристором, его смещение можно контролировать, управляя его углом зажигания через его сигнал затвора. В результате получается полностью управляемый мостовой выпрямитель. В полууправляемом мостовом выпрямителе половина схемы содержит диоды, а другая половина – тиристоры.

    Применение мостового выпрямителя
    • Для подачи поляризованного постоянного напряжения постоянного тока при сварке.
    • Внутренние блоки питания
    • Зарядные устройства внутри
    • Внутри ветряных турбин
    • Для определения амплитуды модулирующих сигналов
    • Для преобразования высокого переменного напряжения в низкое постоянное напряжение

    Полноволновой мостовой выпрямитель – инженеры в последнюю минуту

    Существует еще одна, более популярная двухполупериодная конструкция выпрямителя, построенная на основе конфигурации четырехдиодного моста. Он известен как полноволновой мостовой выпрямитель или просто мостовой выпрямитель .

    Преимущество этого типа конструкции перед версией с центральным отводом состоит в том, что он не требует специального трансформатора с центральным отводом, что резко снижает его размер и стоимость.

    Также эта конструкция использует все вторичное напряжение в качестве входа для выпрямителя. Используя тот же трансформатор, мы получаем в два раза больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным ответвлением.

    Вот почему мостовые выпрямители используются гораздо чаще, чем двухполупериодные.

    Двухполупериодный мостовой выпрямитель

    Для выпрямления обоих полупериодов синусоидальной волны в мостовом выпрямителе используются четыре диода, соединенные вместе в «мостовой» конфигурации. Вторичная обмотка трансформатора подключена с одной стороны сети диодного моста, а нагрузка – с другой.

    На следующем изображении показана схема мостового выпрямителя.

    Функционирование этой схемы легко понять по одному полупериоду за раз.

    Во время положительного полупериода источника диоды D1 и D2 проводят ток, в то время как D3 и D4 имеют обратное смещение.Это создает положительное напряжение нагрузки на нагрузочном резисторе (обратите внимание на положительную полярность нагрузочного резистора).

    В течение следующего полупериода полярность напряжения источника меняется на противоположную. Теперь D3 и D4 смещены в прямом направлении, а D1 и D2 – в обратном. Это также создает положительное напряжение нагрузки на нагрузочном резисторе, как и раньше.

    Обратите внимание, что независимо от полярности входа напряжение нагрузки имеет одинаковую полярность, а ток нагрузки – в одном направлении.

    Таким образом, схема преобразует входное напряжение переменного тока в пульсирующее выходное напряжение постоянного тока.

    Если вам неприятно вспоминать правильное расположение диода в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.

    Значение постоянного тока для двухполупериодного сигнала

    Поскольку мостовой выпрямитель выдает двухполупериодный выходной сигнал, формула для расчета среднего значения постоянного тока такая же, как и для двухполупериодного выпрямителя:

    Это уравнение говорит нам, что значение постоянного тока двухполупериодного сигнала составляет около 63.6 процентов от пикового значения. Например, если пиковое напряжение двухполупериодного сигнала составляет 10 В, напряжение постоянного тока будет 6,36 В

    Когда вы измеряете полуволновой сигнал с помощью вольтметра постоянного тока, показание будет равно среднему значению постоянного тока.

    A Приближение второго порядка

    В действительности мы не можем получить идеальное двухполупериодное напряжение на нагрузочном резисторе. Из-за барьерного потенциала диод не включается, пока напряжение источника не достигнет примерно 0,7 В .

    И поскольку мостовой выпрямитель управляет двумя диодами одновременно, два диода выпадают (0.7 * 2 = 1,4 В) напряжения источника теряются в диоде. Таким образом, пиковое выходное напряжение определяется по формуле:

    Выходная частота

    Двухполупериодный выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого двухполупериодный выход имеет в два раза больше циклов, чем входной.

    Следовательно, частота двухполупериодного сигнала в два раза превышает входную частоту.

    Например, если частота сети 60 Гц, выходная частота будет 120 Гц.

    Фильтрация выходного сигнала выпрямителя

    Выходной сигнал, который мы получаем от двухполупериодного выпрямителя, представляет собой пульсирующее напряжение постоянного тока, которое увеличивается до максимума, а затем уменьшается до нуля.

    Нам не нужно такое постоянное напряжение. Что нам нужно, так это стабильное и постоянное напряжение постоянного тока без каких-либо колебаний или пульсаций напряжения, которые мы получаем от батареи.

    Чтобы получить такое напряжение, нам нужно отфильтровать двухполупериодный сигнал. Один из способов сделать это – подключить конденсатор, известный как сглаживающий конденсатор , через нагрузочный резистор, как показано ниже.

    Изначально конденсатор не заряжен. В течение первой четверти цикла диоды D1 и D2 смещены в прямом направлении, поэтому конденсатор начинает заряжаться. Зарядка продолжается до тех пор, пока входной сигнал не достигнет максимального значения. В этот момент напряжение на конденсаторе равно Vp.

    После того, как входное напряжение достигает пика, оно начинает уменьшаться. Как только входное напряжение становится меньше Vp, напряжение на конденсаторе превышает входное напряжение, что отключает диоды.

    Когда диоды выключены, конденсатор разряжается через нагрузочный резистор и обеспечивает ток нагрузки, пока не будет достигнут следующий пик.

    Когда наступает следующий пик, диоды D3 и D4 ненадолго проводят ток и заряжают конденсатор до максимального значения.

    Недостаток

    Единственным недостатком мостового выпрямителя является то, что выходное напряжение на два диодных падения (1,4 В) меньше входного.

    Этот недостаток проявляется только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, напряжение нагрузки будет иметь пиковое значение всего 3,6 В. Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению (падение на диоде незначительно).

    PREV

    Двухполупериодный выпрямитель

    Диодный мост

    Диодный мост – это конфигурация из четырех (или более) диодов в виде мостовой схемы, обеспечивающая одинаковую полярность выхода для любой полярности входа.

    В наиболее распространенном применении для преобразования входа переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом.

    Существенной особенностью диодного моста является то, что полярность выхода одинакова независимо от полярности на входе. Схема диодного моста была изобретена польским электротехником Каролем Поллаком и запатентована 14 января 1896 года под номером DRP 96564. Позже она была опубликована в Elektronische Zeitung, vol. 25 в 1897 году с пометкой, что немецкий физик Лео Грец в то время тоже занимался этим вопросом. Сегодня трассу по-прежнему часто называют трассой Гретца или мостом Гретца.

    Деталь диодного моста на 1000 вольт, 4 ампера

    Ручной диодный мост. Широкая серебряная полоса на диодах указывает на катодную сторону диода.

    Базовая операция

    Согласно традиционной модели протекания тока (первоначально созданной Бенджамином Франклином и до сих пор используемой большинством инженеров), ток определяется как положительный, когда он течет через электрические проводники от положительного полюса к отрицательному.На самом деле свободные электроны в проводнике почти всегда текут от отрицательного полюса к положительному. Однако в подавляющем большинстве приложений фактическое направление тока не имеет значения. Поэтому в нижеследующем обсуждении традиционная модель сохраняется.

    На схемах ниже, когда вход, подключенный к левому углу ромба, является положительным, а вход, подключенным к правому углу, является отрицательным, ток течет от верхней клеммы питания вправо по красному (положительному) пути к выход, и возвращается к нижней клемме питания по синему (отрицательному) пути.

    Когда вход, подключенный к левому углу, отрицательный, а вход, подключенный к правому углу, положительный, ток течет от нижнего вывода питания вправо по красному (положительному) пути к выходу и возвращается к верхнему источнику питания. терминал через синий (отрицательный) путь.

    В каждом случае верхний правый выход остается положительным, а нижний правый выход – отрицательным.Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только выдает выход постоянного тока из входа переменного тока, но также может обеспечивать то, что иногда называют «защитой от обратной полярности». То есть, он обеспечивает нормальное функционирование оборудования с питанием от постоянного тока, когда батареи установлены в обратном направлении или когда провода (провода) от источника питания постоянного тока перевернуты, и защищает оборудование от возможных повреждений, вызванных обратной полярностью.

    До появления интегральных схем мостовой выпрямитель строился из «дискретных компонентов», т.е.е., отдельные диоды. Примерно с 1950 года один четырехконтактный компонент, содержащий четыре диода, соединенных в мостовую конфигурацию, стал стандартным коммерческим компонентом и теперь доступен с различными номинальными значениями напряжения и тока.

    Сглаживание вывода

    Для многих приложений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования входа переменного тока в выход постоянного тока, может потребоваться добавление конденсатора, поскольку мост сам по себе обеспечивает выход импульсного постоянного тока (см. Диаграмму ниже). .

    Сигналы переменного тока, полуволновые и двухполупериодные выпрямленные сигналы.

    Функция этого конденсатора, известного как накопительный конденсатор (или сглаживающий конденсатор), состоит в том, чтобы уменьшить изменение (или «сгладить») формы волны выпрямленного выходного напряжения переменного тока от моста. Есть еще одна вариация, известная как рябь. Одно из объяснений «сглаживания» заключается в том, что конденсатор обеспечивает путь с низким импедансом к компоненту переменного тока на выходе, уменьшая напряжение переменного тока и ток через резистивную нагрузку.Говоря менее техническим языком, любое падение выходного напряжения и тока моста обычно компенсируется потерей заряда в конденсаторе. Этот заряд протекает через нагрузку как дополнительный ток. Таким образом, изменение тока нагрузки и напряжения уменьшается по сравнению с тем, что произошло бы без конденсатора. Повышение напряжения соответственно сохраняет избыточный заряд в конденсаторе, таким образом смягчая изменение выходного напряжения / тока.

    Показанная упрощенная схема имеет заслуженную репутацию опасной, потому что в некоторых приложениях конденсатор может сохранять смертельный заряд после отключения источника переменного тока.При подаче опасного напряжения практическая схема должна включать надежный способ безопасной разрядки конденсатора. Если нормальная нагрузка не может гарантировать выполнение этой функции, возможно, потому, что она может быть отключена, в схему следует включить спускной резистор, подключенный как можно ближе к конденсатору. Этот резистор должен потреблять ток, достаточно большой, чтобы разрядить конденсатор за разумное время, но достаточно мал, чтобы свести к минимуму ненужные потери энергии.

    Конденсатор и сопротивление нагрузки имеют типичную постоянную времени τ = RC, где C и R – емкость и сопротивление нагрузки соответственно.Пока резистор нагрузки достаточно большой, так что эта постоянная времени намного больше, чем время одного цикла пульсации, вышеуказанная конфигурация будет создавать сглаженное напряжение постоянного тока на нагрузке.

    Когда конденсатор подключен непосредственно к мосту, как показано, ток протекает только в небольшой части каждого цикла, что может быть нежелательно. Диоды трансформатора и моста должны иметь такие размеры, чтобы выдерживать скачок тока, который возникает, когда питание включается на пике переменного напряжения и конденсатор полностью разряжен.Иногда для ограничения этого тока перед конденсатором включается небольшой последовательный резистор, хотя в большинстве случаев сопротивления трансформатора источника питания уже достаточно. Добавление резистора или, еще лучше, катушки индуктивности между мостом и конденсатором может гарантировать, что ток будет протекать в течение большей части каждого цикла и не произойдет большого выброса тока.

    За конденсатором могут быть установлены дополнительные фильтрующие элементы (конденсаторы плюс резисторы и катушки индуктивности) для дальнейшего уменьшения пульсаций.Когда индуктор используется таким образом, его часто называют дросселем. Дроссель имеет тенденцию поддерживать более постоянным ток (а не напряжение). Хотя катушка индуктивности дает наилучшие характеристики, обычно резистор выбирается из соображений стоимости.

    Из-за увеличения доступности микросхем регуляторов напряжения пассивные фильтры используются реже. Микросхемы могут компенсировать изменения входного напряжения и тока нагрузки, чего не делает пассивный фильтр, и в значительной степени устранять пульсации.

    Идеализированные формы сигналов, показанные выше, видны как для напряжения, так и для тока, когда нагрузка на мост является резистивной. Когда в нагрузку входит сглаживающий конденсатор, формы волны как напряжения, так и тока сильно изменяются. В то время как напряжение сглаживается, как описано выше, ток будет течь через мост только в то время, когда входное напряжение больше, чем напряжение конденсатора. Например, если нагрузка потребляет средний ток n Ампер, а диоды проводят в течение 10% времени, средний ток диода во время проводимости должен составлять 10 нАмпер.Этот несинусоидальный ток приводит к гармоническим искажениям и низкому коэффициенту мощности в сети переменного тока.

    Некоторые ранние консольные радиоприемники создавали постоянное поле громкоговорителя с помощью тока от источника высокого напряжения («B +»), который затем направлялся к потребляющим цепям (постоянные магниты тогда были слишком слабы для хорошей работы), чтобы создать постоянную громкоговорителя. магнитное поле. Катушка возбуждения динамика, таким образом, выполняла 2 работы в одном: она действовала как дроссель, фильтруя источник питания, и создавала магнитное поле для управления динамиком.

    Мосты для полифазных диодов

    Диодный мост можно использовать для выпрямления многофазных входов переменного тока. Например, для трехфазного входа переменного тока однополупериодный выпрямитель состоит из трех диодов, а двухполупериодный мостовой выпрямитель состоит из шести диодов.

    Полупериодный выпрямитель

    можно рассматривать как соединение звездой (соединение звездой), потому что он возвращает ток через центральный (нейтральный) провод. Двухполупериодное соединение больше похоже на соединение треугольником, хотя оно может быть подключено к трехфазному источнику по схеме звезды или треугольника, и при этом не используется центральный (нейтральный) провод.

    Трехфазный двухполупериодный мостовой выпрямитель

    Трехфазный мостовой выпрямитель для ветряной турбины

    Трехфазный входной сигнал переменного тока (вверху), полуволновой выпрямленный сигнал (в центре) и двухполупериодный выпрямленный сигнал (внизу)

    Источник: en.wikipedia.org

    Схема полнополупериодного выпрямителя-мостового выпрямителя

    , конструкция и теория

    A Двухполупериодный выпрямитель – это схема, которая использует оба полупериода входного переменного тока (AC) и преобразует их в постоянный ток (DC).В нашем руководстве по полупериодному выпрямителю мы видели, что полуволновой выпрямитель использует только половину цикла входного переменного тока. Таким образом, двухполупериодный выпрямитель намного более эффективен (двойной +), чем полуволновой выпрямитель. Этот процесс преобразования обоих полупериодов входного питания (переменного тока) в постоянный ток (DC) называется двухполупериодным выпрямлением.

    Двухполупериодный выпрямитель

    может быть сконструирован двумя способами. В первом методе используется трансформатор с отводом от центра и 2 диода.Эта конструкция известна как полноволновой выпрямитель с центральным отводом .

    Во втором методе используется обычный трансформатор с 4 диодами, расположенными в виде моста. Это устройство известно как мостовой выпрямитель.

    Теория полноволнового выпрямителя

    Чтобы понять теорию двухполупериодного моста выпрямителя в совершенстве, вам нужно сначала изучить полуволновой выпрямитель. В руководстве по полуволновому выпрямителю мы четко объяснили основы работы выпрямителя.Кроме того, мы также объяснили теорию , лежащую в основе pn-перехода , и характеристики диода с pn-переходом .

    Полноволновой выпрямитель – Работа и эксплуатация

    Работа и эксплуатация двухполупериодного мостового выпрямителя довольно проста. Приведенные ниже принципиальные схемы и формы сигналов помогут вам в совершенстве понять принцип работы мостового выпрямителя. На принципиальной схеме 4 диода расположены в виде моста. Вторичная обмотка трансформатора подключается к двум диаметрально противоположным точкам моста в точках A и C.Сопротивление нагрузки R L подключено к мосту через точки B и D.

    Полноволновой мостовой выпрямитель – принципиальная схема с формами входной и выходной волны
    В течение первой половины цикла

    Во время первого полупериода входного напряжения верхний конец вторичной обмотки трансформатора является положительным по отношению к нижнему концу. Таким образом, в течение первого полупериода диоды D1 и D 3 смещены в прямом направлении, и ток течет через плечо AB, входит в сопротивление нагрузки R L и возвращается обратно, протекая через плечо DC.В течение этой половины каждого входного цикла диоды D 2 и D 4 смещены в обратном направлении, и ток не может течь в плечах AD и BC. На рисунке выше поток тока обозначен сплошными стрелками. Ниже мы разработали еще одну диаграмму, которая поможет вам быстро понять текущий поток. См. Схему ниже – зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.

    Протекание тока в мостовом выпрямителе
    Во время второго полупериода

    Во время второго полупериода входного напряжения нижний конец вторичной обмотки трансформатора является положительным по отношению к верхнему концу. Таким образом, диоды D 2 и D 4 становятся смещенными в прямом направлении, и ток течет через плечо CB, входит в сопротивление нагрузки R L и возвращается обратно к источнику, протекая через плечо DA. Течение тока показано на рисунке пунктирными стрелками.Таким образом, направление протекания тока через сопротивление нагрузки R L остается неизменным в течение обоих полупериодов входного напряжения питания. См. Схему ниже – зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.

    Путь тока во 2-м полупериоде

    Пиковое обратное напряжение двухполупериодного мостового выпрямителя:

    Давайте проанализируем пиковое обратное напряжение (PIV) двухполупериодного мостового выпрямителя, используя принципиальную схему.В любой момент, когда вторичное напряжение трансформатора достигает положительного пикового значения Vmax, диоды D1 и D3 будут смещены в прямом направлении (проводящие), а диоды D2 и D4 будут смещены в обратном направлении (непроводящие). Если рассматривать идеальные диоды в мосте, то смещенные в прямом направлении диоды D1 и D3 будут иметь нулевое сопротивление. Это означает, что падение напряжения на проводящих диодах будет нулевым. Это приведет к тому, что все вторичное напряжение трансформатора будет развиваться через сопротивление нагрузки RL.

    Таким образом, PIV мостового выпрямителя = Vmax (макс. Вторичное напряжение)

    Анализ схемы мостового выпрямителя

    Единственная разница в анализе между двухполупериодным и центральным выпрямителями состоит в том, что

    1. В схеме мостового выпрямителя два диода проводят в течение каждого полупериода, и прямое сопротивление становится двойным (2R F ).
    2. В схеме мостового выпрямителя Vsmax – это максимальное напряжение на вторичной обмотке трансформатора, тогда как в выпрямителе с центральным ответвлением Vsmax представляет это максимальное напряжение на каждой половине вторичной обмотки.

    Различные параметры объясняются уравнениями ниже:

    1. Пиковый ток

    Мгновенное значение напряжения, подаваемого на выпрямитель, равно

    .

    vs = Vsmax Sin wt

    Если предполагается, что диод имеет прямое сопротивление R F Ом и обратное сопротивление, равное бесконечности, ток, протекающий через сопротивление нагрузки, будет равен

    .

    i1 = Imax Sin wt и i2 = 0 для первого полупериода

    и i1 = 0 и i2 = Imax Sin wt для второго полупериода

    Полный ток, протекающий через сопротивление нагрузки R L , где является суммой токов i1 и i2, дается как

    i = i1 + i2 = Imax Sin wt для всего цикла.

    Где пиковое значение тока, протекающего через сопротивление нагрузки R L , задается как

    Imax = Vsmax / (2R F + R L )

    2. Выходной ток

    Поскольку ток через сопротивление нагрузки RL в двух половинах цикла переменного тока одинаков, величина od постоянного тока Idc, которая равна среднему значению переменного тока, может быть получена путем интегрирования тока i1 между 0 и pi. или текущий i2 между пи и 2пи.

    Выходной ток полноволнового выпрямителя
    3. Выходное напряжение постоянного тока

    Среднее или постоянное значение напряжения на нагрузке задается как

    . Выходное напряжение постоянного тока полнополупериодного выпрямителя
    4. Среднеквадратичное значение тока

    Действующее значение или эффективное значение тока, протекающего через сопротивление нагрузки R L , дается как

    Среднеквадратичное значение тока полнополупериодного выпрямителя
    5. Среднеквадратичное значение выходного напряжения

    Действующее значение напряжения на нагрузке равно

    . Среднеквадратичное значение выходного напряжения двухполупериодного выпрямителя
    6.Эффективность выпрямления

    Мощность, передаваемая на нагрузку,

    Эффективность выпрямления полноволнового выпрямителя
    7. Коэффициент пульсации

    Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя равен

    . Коэффициент пульсаций полноволнового выпрямителя

    Итак, коэффициент пульсаций γ = 1,11 2 – 1) = 0,482

    8. Постановление

    Выходное напряжение постоянного тока равно

    . Регулировка полнополупериодного выпрямителя

    Достоинства и недостатки двухполупериодного выпрямителя над полуволновым выпрямителем

    Достоинства – Позвольте нам сначала поговорить о преимуществах двухполупериодного мостового выпрямителя перед полуволновой версией.На данный момент я могу выделить 4 конкретных достоинства.

    • Для двухполупериодного мостового выпрямителя КПД удваивается. Причина в том, что полуволновой выпрямитель использует только половину входного сигнала. Мостовой выпрямитель использует обе половины и, следовательно, двойной КПД
    • Остаточные пульсации переменного тока (до фильтрации) очень низкие на выходе мостового выпрямителя. Такой же процент пульсаций очень высок у полуволнового выпрямителя. Достаточно простого фильтра, чтобы получить постоянное напряжение от мостового выпрямителя.
    • Мы знаем, что эффективность моста FW вдвое выше, чем у выпрямителя HW. Это означает более высокое выходное напряжение, более высокий коэффициент использования трансформатора (TUF) и более высокую выходную мощность.

    Недостатки – Двухполупериодный выпрямитель требует большего количества элементов схемы и является более дорогостоящим.

    Достоинства и недостатки мостового выпрямителя через выпрямитель с центральным отводом.

    Выпрямитель с центральным ответвлением всегда сложно реализовать из-за использования специального трансформатора. Трансформатор с центральным ответвлением также является дорогостоящим.Одно из ключевых различий между центральным отводом и мостовым выпрямителем заключается в количестве диодов, используемых в конструкции. Двухполупериодный выпрямитель с центральным ответвлением требует всего 2 диода, тогда как мостовой выпрямитель требует 4 диода. Но кремниевые диоды дешевле, чем трансформатор с центральным ответвлением, поэтому мостовой выпрямитель является более предпочтительным решением в источниках питания постоянного тока. Ниже приведены преимущества мостового выпрямителя по сравнению с выпрямителем с центральным отводом.

    • Мостовой выпрямитель может быть сконструирован с трансформатором или без него.Если задействован трансформатор, с этим справится любой обычный понижающий / повышающий трансформатор. Эта роскошь недоступна для выпрямителя с центральным отводом. Здесь конструкция выпрямителя зависит от трансформатора с центральным ответвлением, который не подлежит замене.
    • Мостовой выпрямитель подходит для высоковольтных систем. Причина в высоком пиковом обратном напряжении (PIV) мостового выпрямителя по сравнению с PIV выпрямителя с центральным ответвлением.
    • Коэффициент использования трансформатора (TUF) выше для мостового выпрямителя.
    Недостатки мостового выпрямителя над выпрямителем с центральным ответвлением

    Существенным недостатком мостового выпрямителя над центральным отводом является использование 4 диодов в конструкции мостового выпрямителя. В мостовом выпрямителе 2 диода проводят одновременно на полупериоде входного сигнала. Выпрямитель с центральным ответвлением имеет только 1 диод, проводящий за половину цикла. Это увеличивает чистое падение напряжения на диодах в мостовом выпрямителе (оно вдвое превышает значение центрального отвода).

    Применение двухполупериодного мостового выпрямителя

    Двухполупериодный выпрямитель находит применение при создании источников питания постоянного постоянного напряжения, особенно в источниках питания общего назначения. Мостовой выпрямитель с эффективным фильтром идеально подходит для любого типа общих источников питания, таких как зарядка аккумулятора, питание устройства постоянного тока (например, двигателя, светодиода и т. Д.) И т. Д. Однако для аудиоприложения общий источник питания может не подходить. достаточно. Это связано с остаточным коэффициентом пульсаций в мостовом выпрямителе.Есть ограничения на фильтрацию ряби. Для аудиоприложений могут быть идеальными специально сконструированные блоки питания (использующие регуляторы IC).

    Полноволновой мостовой выпрямитель с конденсаторным фильтром

    Выходное напряжение двухполупериодного выпрямителя непостоянно, оно всегда пульсирует. Но это не может быть использовано в реальных приложениях. Другими словами, нам нужен источник питания постоянного тока с постоянным выходным напряжением. Чтобы добиться плавного и постоянного напряжения, используется фильтр с конденсатором или катушкой индуктивности.На схеме ниже показан полуволновой выпрямитель с конденсаторным фильтром.

    Полнополупериодный выпрямитель – с конденсаторным фильтром
    Коэффициент пульсаций мостового выпрямителя

    Коэффициент пульсации – это отношение остаточной составляющей переменного тока к составляющей постоянного тока в выходном напряжении. Коэффициент пульсаций мостового выпрямителя вдвое меньше, чем у полуволнового выпрямителя.

    Список литературы

    2. Чтобы создать простые для понимания изображения, мы сослались на эту статью .

    alexxlab

    leave a Comment