Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор — radiohlam.ru

Осторожно, текст под спойлером перегружен физикой!

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

UC=UC1+UМ (1), iC=iC1+iМ (2)

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор

C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через

C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор

C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

[свернуть]

radiohlam.ru

Расчет емкости гасящего конденсатора для паяльника

радиоликбез

В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки,в частности паяльника, которая позволяет существенно сократить объем вычислений ,сведя их до минимума, что упрощает расчеты и сокращает время, необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.

 

 

В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором – включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.

Осуществление первого варианта (рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

рис.1

величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.

По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток

I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

рис.2

пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.

Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.

Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.

Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:

С = Р∙106/2πf1U2(P/P1 – 1)0,5(мкФ).

При частоте питающей сети = 50 Гц формула принимает вид:

С =3184,71 Р/U2(Р/Р1– 1)0,5 =

=3184,71-100 /2202( 100/60-1 )=8,06 мкФ.

В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно

Uс = (РР1)0,5 ∙106/2πf1СU (В).

При частоте сети f1 = 50 Гц формула упрощается:

Uc = 3184,71 (PP1)0,5/CU =

= 3184,71(60∙100)0,5/8,06 • 220 =

= 139,1 В.

В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:

Rc = U2(P/P, – 1)0,5/Р =

= 2202( 100/60 – 1)0,5/100 = 395,2 Ом.

В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.

Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:

С = Р∙106/2πf1Ur(U2 – Ur2)0,5 мкФ.

При частоте сети f1 = 50 Гц формула принимает вид:

С = 3184,71 P/Ur(U2 – Ur2)0,5 =

= 3184,71 -25/42(2202 – 422) =

= 8,77 мкФ.

Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:

Uc = (U2 – Ur2)0,5 = (2202 – 422) =

= 216 В.

Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:

Rc = Ur(U2 – Ur2)0,5/P =

= 42(2202 – 422)/25 = 362,88 Ом.

По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300…500 кОм.

Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

К. В. Коломойцев.

Читайте также: Расчет бестрансформаторного блока питания

 

 


radiopolyus.ru

Расчет понижающего конденсатора


Полученные параметры понижающего конденсатора

 

Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.

Есть масса способов это сделать подручными материалами. В нашем случае  мы будем использовать одну деталь – ёмкость.

В принципе мы можем использовать и обычное сопротивление, но  в этом случае, у нас возникнет  проблема перегрева данной детали, а там и до пожара недалеко.

 

В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.

Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.

Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину),  которая обладает тоже каким то сопротивлением R

 

Таким образом общее сопротивление цепи будет находиться как 

 

Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке

 

По закону ома, вычислим ток, протекающий в этой цепи.

Как видите  легко зная параметры цепи, вычислить недостающие значения.

А вспомнив как вычисляется мощность  легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.

 

Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.

Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.

Примеры расчета

 

Необходимо запитать лампочку мощностью 36Вт, рассчитанное на напряжение 12В. Какая ёмкость понижающего конденсатора тут необходима?

Если речь идет об электрических сетях в России, то входное напряжение 220 Вольт, частота 50Гц.

 

Ток проходящий через лампочку  равен  3 Ампера (36 делим на 12). Тогда ёмкость по вышенаписанной формуле будет равна:

Полученные параметры понижающего конденсатора

C = 4.334146654694E-5 Фарад 
I = 3 Ампер 
P = 36 Ватт 
Ua = 220 Вольт 
Ub = 12 Вольт 
f = 50 Герц 

 

Что бы не переводит степени минус пятой степени в микро или мимли Фарады, воспользуемся вот этим ботом и получим 

Полученный результат конвертации

полученное число = 0.0433414665469миллиФарад

Альтернативное представление

что нам нужен конденсатор  ёмкостью 43 мкФ.

 

  • Сопротивление. Зависимость от температуры >>

abakbot.ru

Блок питания делитель на конденсаторе. Расчет гасящего конденсатора

Что это, светодиодная лента – это гибкая лента (печатная плата), на которой размещены бескорпусные светодиоды и токоограничивающие резисторы. Конструкция ленты позволяет отрезать от неё нужные куски в зависимости от конкретных требований. Рядом с линией разреза имеются контактные площадки, к которым припаиваются питающие провода. С обратной стороны на светодиодную ленту нанесена самоклеящаяся пленка. Наиболее популярными являются ленты с питанием 12В.

Рис. 2. Waterproof 5050 SMD LED Strip.

Данная светодиодная лента имеет следующие характеристики: угол излучения света – 120 градусов напряжение питания – 12В потребляемый ток – 1,2А на 1 метр световой поток – 780-900 Lm/m класс защиты – IP65

Почти год лента пролежала без дела, но когда во второй раз у меня «вылетел» ЭПРА (электронный пускорегулирующий аппарат) в люминесцентном светильнике, используемом для подсветки рабочего места около компьютера, я понял, что нужно переходить на более современные способы организации освещения.

В качестве корпуса был использован все тот же вышедший из строя светильник для люминесцентных ламп мощностью 8 Вт и длиной 30 см. Его переделка под «светодиодный вариант» очень проста.

Светильник разбираем, извлекаем плату ЭПРА и наклеиваем на внутреннюю поверхность светильника светодиодную ленту. Всего получилось шесть сегментов по три светодиода в каждом сегменте или в общей сложности 18 светодиодов, установленных с интервалом в 15 мм между ними (рис.3).

Рис. 3. Самодельный светодиодный светильник.

Неисправный ЭПРА выбрасывать не нужно, его печатную плату вполне можно использовать для блока питания нашего светильника. Да и не только, плату, а и некоторые его компоненты (разумеется, при условии, что они остались исправными), например, диодный мост. На блоке питания остановимся более подробно.

Для питания светодиодов необходимо применять блоки питания со стабилизацией по току. Иначе светодиоды будут постепенно разогреваться до критической температуры, что неизбежно приведет к их выходу из строя.

Наиболее простым и оптимальным решением в нашем случае будет использование бестрансформаторного блока питания с балластным конденсатором (рис. 4).

Рис. 4 Бестрансформаторный блок питания с балластным конденсатором

Сетевое напряжение гасится балластным конденсатором С1 и подается на выпрямитель, собранный на диодах VD1-VD4. С выпрямителя постоянное напряжение поступает на сглаживающий фильтр С2.

Резисторы R2 и R3 служат для быстрой разрядки конденсаторов С1 и С2 соответственно. Резистор R1 ограничивает ток в момент включения, а стабилитрон VD5 ограничивает выходное напряжение блока питания на уровне не более 12В в случае обрыва светодиодной ленты.

Основным элементом данной схемы, который требует расчета, является конденсатор С1. Именно от его номинала зависит ток, который может обеспечить блок питания. Для расчета проще всего воспользоваться специальным калькулятором, который можно найти в сети.

Максимальный ток, согласно паспортных данных, при длине отрезка светодиодной ленты 30 см должен составлять 1,2 А / 0,3 = 400 mA. Разумеется, не стоит питать светодиоды максимальным током.

Я решил ограничить его приблизительно на уровне 150 мА. При таком токе светодиоды обеспечивают оптимальное (для субъективного восприятия) свечение при незначительном нагреве. Введя исходные данные в калькулятор, получаем значение емкости конденсатора С1, равное 2,079 мкФ (рис. 5).

Рис. 5. Расчет конденсатора для схемы блока питания.

Выбираем наиболее близкий стандартный номинал конденсатора относительно полученного в расчете. Это будет номинал 2,2 мкФ. Напряжение, на которое рассчитан конденсатор, должно быть не менее 400В.

Выполнив расчет балластного конденсатора и подобрав элементы схемы блока питания, размещаем их на плате неисправного ЭПРА. Все лишние детали желательно удалить (кроме моста из четырех диодов). Вид платы блока питания, смотрите на рис. 6.

Итак, начнём, с того, зачем вообще нужен такой блок питания. А нужен он затем, что позволяет запитать слаботочные нагрузки не заморачиваясь с намоткой трансформаторов и используя минимум компонентов. Минимальное число компонентов (и тем более отсутствие таких габаритных компонентов как трансформатор), в свою очередь, делают блок питания с конденсаторным делителем (иногда говорят “с емкостным делителем”) простым и исключительно компактным.

Рассмотрим схему, изображённую на рисунке:

Здесь Z 1 = -j/wC 1 ; Z 2 = -j/wC 2 — реактивные сопротивления конденсаторов

Найдём ток нагрузки: i н = i 1 -i 2 (1) — первый закон Кирхгофа для узла 1.

Учитывая, что по закону Ома для участка цепи: i 1 =u 1 /Z 1 , а u 1 =u c -u 2 ;

выражение (1) можно переписать в следующем виде:

i н =(u c -u 2 )/Z 1 -u 2 /Z 2 ;

или по другому: Iн=jwC 1 (Uс м -U )-jwC 2 U 2м, где индекс “м” — это сокращение от слова максимальный, он говорит о том, что речь идёт об амплитудных значениях.

Раскрыв скобки и сгруппировав это выражение, получим:

Iн=jwC 1 (Uс м -U (1 2 1 )) (2) — вот, собственно, мы и получили выражение для тока через нагрузку Zн, в зависимости от напряжения на этой нагрузке и напряжения питающей сети. Из формулы (2) следует, что амплитудное значение тока равно: Iнм=wC 1 (Uс м -U (1 2 1 )) (3)

Предположим, что наша нагрузка — это мост, сглаживающий конденсатор и, собственно, полезная нагрузка (смотрим рисунок).

При начальном включении, когда конденсатор C 3 разряжен, величина U 2 будет равна нулю и через мост потечёт пусковой зарядный ток, максимальное начальное значение которого можно найти, подставив в формулу (3) величину U 2м равную нулю (Iпуск=wC 1 Uc м ). Это значение соответствует худшему случаю, когда в момент включения мгновенное значение напряжения в сети было равно максимальному значению.

С каждым полупериодом конденсатор C 3 будет заряжаться и наше напряжение U 2м, равное по модулю напряжению на конденсаторе C 3 и напряжению на полезной нагрузке (обозначим его как U вых), также будет расти, пока не вырастет до некоторого постоянного значения. При этом ток через полезную нагрузку будет равен средневыпрямленному току, т.е. I вых=I нм*2/”Пи” (для синусоидального входного тока).

Учитывая также, что Uc м =U c*1,414 (U c — действующее значение питающего напряжения), а w =2*”Пи”*f , где f -ча

elektrokomplektnn.ru

Конденсаторное питание | Электроника для всех

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

easyelectronics.ru

Использование конденсатора в качестве сопротивления

Опубликовал admin | Дата 10 ноября, 2014

     Маломощные зарядные устройства для герметизированных малогабаритных аккумуляторов, блоки питания для светодиодных ламп, блоки питания для низковольтных слаботочных устройств обычно подключают к первичной сети переменного тока 220 вольт через понижающие трансформаторы или добавочные резисторы. При этом на гасящем резисторе выделяется большая бесполезная мощность в виде тепла, а трансформаторы имеют большие габариты и вес.

      Можно конечно применить малогабаритные трансформаторы, но из-за применения в них очень тонких обмоточных проводов, резко уменьшается надежность таких блоков питания. Известно, что конденсатор, установленный в цепи переменного тока, обладает реактивным сопротивлением, которое зависит от частоты переменного тока, протекающего через его обкладки. Использование конденсаторов позволяет гасить излишнее напряжение, при этом мощность на реактивном сопротивлении не выделяется и это является большим преимуществом конденсатора перед резистором. Один из методов расчета гасящего конденсатора я уже приводил ранее, теперь хочу предложить еще один, с использованием номограммы.
     Так как полное сопротивление Z цепи, составленной из последовательно включенных нагрузки с активным сопротивлением Rн и гасящего конденсатора с реактивным сопротивлением Хс равно


то прямой расчет емкости гасящего конденсатора довольно сложен.

     Поэтому проще воспользоваться номограммой. На ней по оси абсцисс отложены величины сопротивлений нагрузки Rн в килоомах, а по оси ординат отложены величины емкостей гасящих конденсаторов в микрофарадах. По оси, проведенной под углом сорок пять градусов – полные сопротивления Z цепи в килоомах.
Чтобы воспользоваться номограммой, надо определить сопротивление нагрузки — Rн. Rн = I2•R = U2/R и полное сопротивление цепи Z.
Пример. Мостовой выпрямитель с выходным напряжением 12 вольт и током нагрузки 120 мА необходимо питать от сети переменного тока 220 вольт. Надо найти емкость гасящего конденсатора, подключенного последовательно выпрямительному диодному мосту.
Для начала нам необходимо определить сопротивление нагрузки. Rн = U/I = 12 В / 0,12 А = 100 Ом. Теперь определяем полное сопротивление цепи в сети переменного тока 220 вольт. Z = 220 В/0,12 А = 1833 Ом. Далее определяем емкость гасящего конденсатора по номограмме. Для этого из точки на оси абсцисс, соответствующей сопротивлению 100 Ом восстановим перпендикуляр. Через точку, находящуюся на оси Z и соответствующей сопротивлению 1833 Ома, проводим дугу В с центром в точке 0, до пересечения с перпендикуляром А. Получаем точку С, которую проектируем на оси Y – ось емкости. Получаем необходимую емкость гасящего конденсатора, примерно 1,8 мкф. Все просто и удобно. Успехов. К.В.Ю.
Используемая литература: журнал «Радио» № 7 за 1970 год. Автор статьи В. Шишков
Скачать рисунок номограммы можно в формате sPlan здесь.

Скачать “Использование конденсатора в качестве сопротивления” Nomogramma.rar – Загружено 1314 раз – 2 KB

Обсудить эту статью на – форуме “Радиоэлектроника, вопросы и ответы”.

Просмотров:16 188


www.kondratev-v.ru

Расчет сетевого источника питания с гасящим конденсатором

РАСЧЕТ СЕТЕВОГО ИСТОЧНИКА ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

С. БИРЮКОВ, г. Москва

Методика расчета бестрансформаторных источников питания с га­сящим конденсатором, предложенная М. Дорофеевым (“Бестранс­форматорный с гасящим конденсатором” в “Радио”, 1995, Ns 1), во-первых, весьма сложна, неудобна для проектирования блока пита­ния с выходным напряжением менее 20 В, а во-вторых, она не во всем безошибочна. Автор помещенной ниже статьи предлагает аль­тернативную методику, обеспечивающую высокую точность расче­та, проверенную многолетней практикой.



Для малых значешй выходного на­пряжения

В таком источнике питания к сети пе­ременного напряжения подключены по­следовательно соединенные конденса­тор и нагрузка. Рассмотрим вначале ра­боту источника с чисто резистивной на­грузкой (рис.1,а).

Из курса электротехники известно, что полное сопротивление последова­тельно включенных конденсатора С1 и резистора Рн равно:

где Xc1=1/2n*f*C1 – емкостное сопротив­ление конденсатора на частоте f. Поэто-

Рис.1

му эффективный переменный ток в цепи Iэфф=Uс/Z (Uc – напряжение питающей се­ти). Нагрузочный ток связан с емкостью конденсатора, выходным напряжением источника и напряжением сети следую

Для малых значений выходного на­пряжения

Iэфф=2л*f*С1*Uс.

В качестве примера, полезного в практике, проведем расчет гасящего кон­денсатора для включения в сеть 220 В паяльника на 127 В мощностью 40 Вт. Не­обходимое эффективное значение тока нагрузки Iэфф=40/127=0,315 А. Расчетная емкость гасящего конденсатора

Для работы нагревательных приборов важно значение именно эффективного то­ка. Однако, если нагрузкой является, на­пример, аккумуляторная батарея, вклю­ченная в диагональ выпрямительного мос­та (рис. 1 ,б), заряжать ее будет уже сред-невыпрямленный (пульсирующий) ток, численное значение которого меньше Iэфф:

                                               (1)

В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последова­тельно с диодным мостом, а нагрузка, за-шунтированная другим конденсатором, питается от выходной диагонали моста (рис. 2). В этом случае цепь становится резко нелинейной и форма тока, протека­ющего через мост и гасящий конденса­тор, будет отличаться от синусоидаль­ной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в ис­точнике со сглаживающим конденсато­ром С2 емкостью, достаточной для того, чтобы считать пульсации выходного на­пряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся ре­жиме представляет собой некий эквива­лент симметричного стабилитрона. При напряжении на этом эквиваленте, мень­шем некоторого значения (оно практиче­ски равно напряжению Uвых на конденса­торе С2), мост закрыт и тока не прово­дит, при большем – через открытый мост течет ток, не давая увеличиваться на­пряжению на входе моста.

Рассмотрение начнем с момента ti, когда напряжение сети максимально (рис. 3). Конденсатор С1 заряжен до амп­литудного напряжения сети Uс.амп за вы­четом напряжения на диодном мосте uм, примерно равного Uвых. Ток через кон­денсатор С1 и закрытый мост равен ну­лю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меня­ется.

Рис. 2

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток lei через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не ме­няется, а ток определяется скоростью изменения напряжения сети и, следова­тельно, будет точно таким же, как если бы к сети был подключен только конден­сатор С1 (график 3).

Когда напряжение сети достигнет от­рицательного амплитудного значения (момент t3), ток через конденсатор С1 снова станет равным нулю. Далее про­цесс повторяется каждый полупериод.

Ток через мост протекает лишь в ин­тервале времени от t2 до t3, его среднее значение может быть рассчитано как площадь заштрихованной части синусои­ды на графике 3. Несложные расчеты, требующие, однако, знания дифференци­ального и интегрального исчисления, да­ют такую формулу для среднего тока Iср через нагрузку Rн:

                      (2)

При малых значениях выходного на­пряжения эта формула и ранее получен­ная (1) дают одинаковый результат. Если в (2) выходной ток приравнять к нулю, по­лучим Uвыx=Uc*2^1/2, т. е. при токе нагрузки, равном нулю (при случайном отключении нагрузки, скажем, из-за ненадежного контакта), выходное напряжение источ­ника становится равным амплитудному напряжению сети. Это означает, что все элементы источника должны выдержи­вать такое напряжение. При уменьшении тока нагрузки, например, на 10%, выход­ное напряжение увеличится так, чтобы выражение в скобках также уменьши­лось на 10%, т. е. примерно на 30 В (при Uвых=10 В). Вывод – включение стабили­трона параллельно нагрузке Rн (как по­казано штриховыми линиями на рис. 2) практически обязательно.

Для однополупериодного выпрямите­ля (рис. 4) ток рассчитывают по следую­щей формуле:

Естественно, при малых значениях выходного напряжения ток нагрузки бу­дет вдвое меньше, чем для двуполупери-одного выпрямителя, а выходное напря­жение при нулевом токе нагрузки – вдвое больше – ведь это выпрямитель с удвое­нием напряжения!

Порядок расчета источников по схеме на рис. 2 следующий. Вначале задаются выходным напряжением Uвых, максималь­ным Iн max и минимальным Iнmin значения-ми тока нагрузки, максимальным Uc max и минимальным Uc min значениями напря­жения сети. Выше уже было указано, что при меняющемся токе нагрузки обязате­лен стабилитрон, включенный парал­лельно нагрузке Rн. Как его выбирать? При минимальном напряжении сети и максимальном токе нагрузки через ста­билитрон должен протекать ток не менее допустимого минимального тока стабили­зации 1ст min. Можно задаться значением в пределах 3…5 мА. Теперь определяют емкость гасящего конденсатора С1 для двуполупериодного выпрямителя:

С1 =3,5(Iст min+lн max)/(Uc min-0,7Uвыx). (3)

Формула получена из (2) подстанов­кой соответствующих значений. Ток в ней – в миллиамперах, напряжение – в воль­тах; емкость получится в микрофарадах. Результат расчета округляют до ближай­шего большего номинала; можно исполь­зовать батарею из нескольких конденса­торов, включенных параллельно.

Далее рассчитывают максимальный ток через стабилитрон при максималь­ном напряжении сети и минимальном по­требляемом от источника токе:

Iст max=(Uc mах-0,7Uвых)С1/3,5-Iн min    (4)

При отсутствии стабилитрона на не­обходимое напряжение Uвых, допускаю­щего рассчитанный максимальный ток стабилизации, можно соединить несколь­ко стабилитронов на меньшее напряже­ние последовательно или применить ана­лог мощного стабилитрона [1].

Подставлять в формулу (4) минималь­ный ток нагрузки Iн mm следует лишь тог­да, когда этот ток длителен – единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секун­ды) его надо заменить средним (по вре­мени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использо­вать гасящий конденсатор несколько большей емкости для уменьшения требо­ваний к точности его подборки.

При однополупериодной схеме вы­прямления (рис. 4) емкость гасящего кон­денсатора и максимальный ток через стабилитрон рассчитывают по форму­лам:

vunivere.ru

alexxlab

leave a Comment