ШИМ контроллеры — справочник по микросхемам для импульсных блоков питания
Наибольшее распространение в источниках питания для бытовой аппаратуры получили импульсные блоки питания с импульсным трансформатором, в которых силовой ключ работает на постоянной частоте повторения импульсов, а длительность самих импульсов изменяется под действием формирователя широтно-импульсной модуляции ШИМ (ШИМ, англ. pulse-width modulation (PWM)).
Определение: широтно-импульсная модуляция — процесс управления мощностью, подводимой к нагрузке, путем изменения скважности импульсов, при постоянной частоте.
Принцип работы импульсных блоков питания на основе широто-импульсной модуляции
Рис. 1. Принцип формирования ШИМ.
Формирование ШИМ осуществляется с помощью порогового элемента ПЭ, на один вход которого подается пилообразное напряжение Uпил а на второй — медленно изменяющееся напряжение Uизм, пропорциональное значению выходного напряжения лока питания Uвых. Изменение наклона пилы или уровня напряжения Uизм
В схему управления обычно входят задающий генератор (чаще всего, RC-типа или блокинг-гене-ратор), широтно-импульсный модулятор (ШИМ), цепи запуска, стабилизации (цепи обратных связей) и защиты. Весьма часто, для уменьшения помех на изображении, работу задающего генератора синхронизируют со строчной разверткой, для чего на схему управления поступают строчные импульсы обратного хода (СИОХ).
Рис. 2. Структурная схема импульсного стабилизатора телевизора с ШИМ.
Напряжение с выпрямителя Uвх подается на ключ К, соединенный последовательно с первичной обмоткой импульсного автотрансформатора L1 и эталонным резистором R24. Ключ К открывается в моменты прихода на него импульсов с усилителя У, длительность которых определяет значения напряжений на выходах вторичных выпрямителей В1 и В2. С выхода выпрямителя В2 через измерительную схему ИС напряжение поступает на один — из входов СС; на другой ее вход подается напряжение с источника опорного напряжения (ИОН).
Выходное напряжение ошибки с СС управляет проводимостью генератора тока ГТ, которая определяет длительность импульсов на выходе схемы ШИМ. Период следования импульсов с генератора Г, поступающих на формирователь ШИМ, соответствует периоду следования импульсов строчной развертки телевизора, так как синхронизируется ими по входу «Синхр».
Формирователь Ф улучшает форму прямоугольных импульсов. При возрастании падения напряжения на R24 срабатывает схема защиты СЗ и запрещает проход импульсов на ключ К. При включении телевизора стабилизатор запускается броском тока через резистор R14; в стационарном режиме стабилизатор питается от схемы самоподпитки С.
Схема импульсного блока питания предъявляет высокие требования к значениям предельно допустимых электрических параметров транзистора, используемого в ключевом каскаде. В течение времени tо (рис. 1), когда транзистор открыт, по обмотке импульсного трансформатора протекает пилообразно возрастающий ток. При чрезмерно «широком» отпирающем импульсе («пила» слишком долго нарастает) или при коротком замыкании на выходе блока питания («пила» имеет слишком большую крутизну) транзистор может выйти из строя. С другой стороны, при протекании тока происходит накопление энергии в магнитном поле трансформатора, а при закрывании транзистора возникает ЭДС самоиндукции е, значение которой зависит от питающего каскад напряжения Еп, времени открытого tо и закрытого tз состояния транзистора: е = Eпtо/t з.
Максимальное напряжение, прикладываемое к коллектору транзистора, Uк = Еп (1 + tо/tз.) может оказаться значительным (например, при tо = tз Uк=2Eп). Таким образом, эффективным средством защиты транзистора ключевого каскада от пробоя и от перегрузки по току является соответствующая регулировка соотношения tо/tз с помощью схемы широтно-импульсной модуляции ШИМ. Кроме того, для защиты выходного транзистора от пробоя к его коллектору подключают демпфирующие цепочки, составленные из резисторов, конденсаторов, диодов; между базой и эмиттером включают низкоомный резистор. Для демпфирования паразитных колебаний применяется специальная рекуперационная обмотка импульсного трансформатора с подключенным к ней выпрямителем.
Для уменьшения наводок от импульсного блока питания диоды выпрямителей шунтируются конденсаторами небольшой емкости; в цепи сглаживающих фильтров включают дроссели, роль которых нередко выполняет кусочек проволоки, продетой в ферритовую трубку; большое внимание уделяется экранированию и заземлению.
С целью получения дополнительных номиналов стабильного выходного напряжения в состав импульсных блоков питания нередко входит маломощный линейный стабилизатор, подключаемый к выходу одного из вторичных выпрямителей. В бестрансформаторных импульсных блоках питания сетевое напряжение подается на выпрямитель через специальный резистор, ограничивающий бросок тока в момент включения телевизора. Специфической особенностью блоков питания, применяемых в цветных телевизорах, является наличие в некоторых из них схемы размагничивания маски и бандажа кинескопа.
Смотрите также материалы, где рассматриваются основные принципы работы импульсных блоков питания на основе широто-импульсной модуляции:
Импульсные блоки питания структурная схема, принципы работы
Трансформаторные преобразователи с задающими генераторами
Онлайн справочник по микросхемам для импульсных блоков питания
Самый простой способ найти нужную документацию на микросхему для блоков питания, их цоколевку, типовую схему включения — воспользоваться быстропоиском в конце страницы или пролистать справочник и ознакомиться с его содержанием.
Быстропоиск:
Микросхемы: HM9207
| IX1779ce
| KA3842
| KA3882
| M67209
| MA2830
| MA2831
| STK730-080
| STK7348
| STR451
| STR6307
| STR10006
| STR11006
| STR40115
| STR50103
| STR50115
| STR54041
| STR80145
| STRD1816
| STRD6004
| STRD6601
| STR-M6549
| STR-S5941
| TDA4600
| TDA4601
| TDA4601b
| TDA4605
| TDA8380
| TEA1039
| TEA2018
| TEA2019
| TEA2162
| TEA2164
| TEA2260
| TEA2262
| TEA5170
| UAA4600
| UC2842 | UC3842
| UC2844 | UC2845 | UC3844 | UC3845
www.xn--b1agveejs.su
схема, принцип работы, управление :: SYL.ru
Один из используемых подходов, позволяющих существенно сократить потери на нагревании силовых компонентов радиосхем, представляет собой использование переключательных режимов работы установок. При подобных системах электросиловой компонент или раскрыт — в это время на нем наблюдается фактически нулевое падение напряжения, или открыт — в это время на него подается нулевой ток. Рассеиваемую мощность можно вычислить, перемножив показатели силы тока и напряжения. В этом режиме получается достичь коэффициента полезного действия около 75-80% и более.
Что такое ШИМ?
Для получения на выходе сигнала требуемой формы силовой ключ должен открываться всего лишь на определенное время, пропорциональное вычисленным показателям выходного напряжения. В этом и заключается принцип широтно-импульсной модуляции (ШИМ, PWM). Далее сигнал такой формы, состоящий из импульсов, разнящихся по своей ширине, поступает в область фильтра на основе дросселя и конденсатора. После преобразования на выходе будет практически идеальный сигнал требуемой формы.
Область применения ШИМ не ограничивается импульсными источниками питания, стабилизаторами и преобразователями напряжения. Использование данного принципа при проектировании мощного усилителя звуковой частоты дает возможность существенно снизить потребление устройством электроэнергии, приводит к миниатюризации схемы и оптимизирует систему теплоотдачи. К недостаткам можно причислить посредственное качество сигнала на выходе.
Формирование ШИМ-сигналов
Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.
Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:
- Общий вывод (GND). Он реализуется в виде ножки, которая подключается к общему проводу схемы питания устройства.
- Вывод питания (VC). Отвечает за электропитание схемы. Важно не спутать его с соседом с похожим названием — выводом VCC.
- Вывод контроля питания (VCC). Как правило, чип контроллера ШИМ принимает на себя руководство силовыми транзисторами (биполярными либо полевыми). В случае если напряжение на выходе снизится, транзисторы станут открываться лишь частично, а не целиком. Стремительно нагреваясь, они в скором времени выйдут из строя, не справившись с нагрузкой. Для того чтобы исключить такую возможность, необходимо следить за показателями напряжения питания на входе микросхемы и не допускать превышения расчетной отметки. Если напряжение на данном выводе опускается ниже установленного специально для этого контроллера, управляющее устройство отключается. Как правило, данную ножку соединяют напрямую с выводом VC.
Выходное управляющее напряжение (OUT)
Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).
Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей «затвор — исток» и «затвор — сток». Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.
Для контроля над биполярным транзистором двухтактный каскад не используется, так как управление осуществляется с помощью тока, а не напряжения. Для закрытия биполярного транзистора достаточно всего лишь прекратить протекание тока через базу. При этом замыкание базы на общий провод необязательно.
Ещё о функциях контроллеров ШИМ
Задумав спроектировать контроллер ШИМ своими руками, необходимо как следует продумать все детали его реализации. Только так можно создать работающее устройство. Кроме вышеуказанных выходов, работа ШИМ-контроллера подразумевает наличие следующих функций:
- Опорное напряжение (VREF). Фабричные изделия для удобства обычно дополняются функцией выработки стабильного опорного напряжения. Специалисты заводов-изготовителей рекомендуют соединять данный вывод с общим проводом через емкость не менее 1 мкФ для повышения качества и возможности стабилизации опорного напряжения.
- Ограничение тока (ILIM). Если показатели напряжения на данном выводе существенно превышают установленное (как правило, около 1 В), то контроллер автоматически закрывает силовые ключи. В случаях, когда показатель напряжения превышает второе пороговое значение (в пределах 1,5-2 В), устройство тут же обнуляет напряжение на подключении к мягкому старту.
- Мягкий старт (SS). Показатель напряжения на данном выходе определяет максимально допустимую ширину будущих модулируемых импульсов. На данный вывод подает ток установленной величины. Если между ним и всеобщим кабелем вмонтировать дополнительную емкость, то она будет медленно, но уверенно заряжаться, что приведет к постепенному расширению каждого импульса от минимума вплоть до окончательного расчетного значения. Благодаря этому можно обеспечить плавное, а не стремительное нарастание величин тока и напряжения в общей схеме устройства, благодаря чему такая система и заслужила свое название «мягкий старт». При этом, если специально ввести ограничение по напряжению на данном выводе, допустим, подключив делитель напряжения и систему диодов, можно и вовсе ограничить превышение импульсами некоего задаваемого значения ширины.
Частота работы устройств, синхронизация
Микросхемы ШИМ-контроллеров могут применяться для различных целей. Чтобы отладить их совместную работу с другими элементами устройства, следует разобраться, как устанавливать те или иные параметры работы контроллера и какие компоненты цепи за это отвечают.
- Резистор и емкость, задающие частоту работы всего устройства (RT, CT). Каждый контроллер может работать лишь на определенно заданной частоте. Каждый из импульсов следует лишь с этой частотой. Устройство может менять длительность импульсов, их форму и протяженность, но только не частоту. На практике это означает, что чем меньше протяженность импульса, тем длительнее пауза между ним и следующим. При этом частота следования всегда неизменна. Емкость, подключенная между ножкой CT и общим кабелем, и резистор, подключенный к выходу RT и общему кабелю, в комбинации могут задавать частоту, на которой будет работать контроллер.
- Синхроимпульсы (CLOCK). Весьма распространены случаи, в которых требуется отладить работу нескольких контроллеров так, чтобы выходные сигналы формировались синхронно. Для этого к одному из контроллеров (как правило, ведущему) требуется подключить частотозадающие емкость и резистор. На выходе CLOCK контроллера сразу же появятся короткие импульсы, соответствующие напряжению, которые подаются на аналогичные выходы всей группы устройств. Их принято называть ведомыми. Выводы RT таких контроллеров следует объединить с ножками VREF, а CT — с общим кабелем.
- Напряжение сравнения (RAMP). На этот вывод следует подавать сигнал пилообразной формы (напряжение). При возникновении синхроимпульса на выходе устройства образуется открывающее контрольное напряжение. После того как показатель напряжения на RAMP становится больше в несколько раз, чем величина выходного напряжения на усилителе ошибки, на выходе можно наблюдать импульсы, отвечающие закрывающему напряжению. Длительность импульса может рассчитывать от момента возникновения синхроимпульса вплоть до момента многократного превышения показателя напряжения на RAMP над величиной выходного напряжения усилителя ошибки.
ШИМ-контроллеры в составе блоков питания
Блок питания является неотъемлемым элементом большинства современных девайсов. Срок его эксплуатации практически ничем не ограничен, но от его исправности во многом зависит безопасность работы подконтрольного устройства. Спроектировать блок питания можно и своими руками, изучив принцип его действия. Основная цель – формирование нужной величины напряжения питания, обеспечение её стабильности. Для большинства мощных устройств гальванической развязки, основанной на действии трансформатора, будет недостаточно, да и подобранный элемент явно удивит пользователей своими габаритами.
Увеличение частоты тока питания позволяет существенно уменьшить размеры используемых компонентов, что обеспечивает популярность блоков питания, работающих на частотных преобразователях. Один из самых простых вариантов реализации питающих элементов – блок-схема, состоящая из прямого и обратного преобразователей, генератора и трансформатора. Несмотря на видимую простоту реализации таких схем, на практике они демонстрируют больше недочетов, чем преимуществ. Большинство получаемых показателей стремительно изменяются под влиянием скачков напряжения питания, при загрузке выхода преобразователя и даже при увеличении температуры окружающей среды. ШИМ-контроллеры для блоков питания дают возможность стабилизировать схему, а также воплотить множество дополнительных функций.
Составляющие схемы блоков питания с ШИМ-контроллерами
Типовая схема состоит из генератора импульсов, в основе которого лежит ШИМ-контроллер. Широтно-импульсная модуляция дает возможность собственноручно контролировать амплитуду сигнала на выходе ФНЧ, изменяя при необходимости длительность импульса или его скважность. Сильная сторона ШИМ – высокий КПД усилителей мощности, в особенности звука, что в целом обеспечивает устройствам довольно обширную сферу применения.
ШИМ-контроллеры для блоков питания могут использоваться в схемах с различными мощностями. Для реализации относительно маломощных схем необязательно включать в их состав большое число элементов – в качестве ключа может выступать обычный полевой транзистор.
ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.
Основные проблемы ШИМ-преобразователей
При работе любого устройства полностью исключить вероятность поломки невозможно, и преобразователей это тоже касается. Сложность конструкции при этом не имеет значения, проблемы в эксплуатации может вызвать даже известный ШИМ-контроллер TL494. Неисправности имеют различную природу – некоторые из них можно выявить на глаз, а для обнаружения других требуется специальное измерительное оборудование.
Чтобы узнать, как проверить ШИМ-контроллер, следует ознакомится со списком основных неисправностей приборов, а лишь позже – с вариантами их устранения.
Диагностика неисправностей
Одна из часто встречающихся проблем – пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.
Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:
- Контроллер глохнет после старта – обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
- ШИМ-контроллер не стартует – отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
- Напряжение на выходе отличается от номинального – проблемы с петлей ООС или с контроллером.
- После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах – некорректная работа ШИМ или драйверов.
- Нестабильная работа платы, наличие странных звуков – обрыв петли ООС или цепочки RC, деградация емкости фильтра.
В заключение
Универсальные и многофункциональные ШИМ-контроллеры сейчас можно встретить практически везде. Они служат не только в качестве неотъемлемой составляющей блоков питания большинства современных устройств — типовых компьютеров и других повседневных девайсов. На основе контроллеров разрабатываются новые технологии, позволяющие существенно сократить расход ресурсов во многих отраслях человеческой деятельности. Владельцам частных домов пригодятся контроллеры заряда аккумуляторов от фотоэлектрических батарей, основанные на принципе широтно-импульсной модуляции тока заряда.
Высокий коэффициент полезного действия делает разработку новых устройств, действие которых основывается на принципе ШИМ, весьма перспективной. Вторичные источники питания — вовсе не единственное направление деятельности.
www.syl.ru
Микросхемы ШИМ — контроллеров для импульсных источников питания (ИИП).
| ||||||
---|---|---|---|---|---|---|
В справочник отобраны распространенные недорогие микросхемы | ||||||
Наименование | Ucc, В | Uвых, В | Iмакс, A | Примечание | ||
— простое схемное решение для маломощных источников питания, не требующих гальваноразвязки. Надежные встроенные токовая и температурная защиты. | ||||||
LNK302-306 | 50…450* | .5..24… | 0.36 | регулирование выпусканием импульсов | шим контроллер с встроенным ключом | |
Viper12 | 40…450* | 10..35… | 0.2* | ШИМ, Pвых до 13Вт | контроллер для простого импульсного источника питания. может использоваться для питания светодиодов, микроконтроллеров от сетевого напряжения | |
Viper22 | 40…450* | 10..35… | 0.35* | ШИМ, Pвых до 20Вт | высоковольтный понижающий стабилизатор напряжения | |
BP5048-15 | 250…358 | 15 | 0.2 | нужен только дроссель | простой понижающий импульсный DC/DC источник питания на 15В | |
BP5048-24 | 250…358 | 24 | 0.2 | нужен только дроссель | DC/DC бестрансформаторный импульсный источник питания на 24В на 24В | |
для маломощных трансформаторных источников питания. Минимум внешних компонентов. Встроенные токовая и температурная защиты. | ||||||
LNK362-364 | 100..400* | 0.2…0.4 | встроенный источник собственного питания | ШИМ контроллер для простого импульсного источника питания | ||
LNK623-626 | 100..400* | 0.4…0.7 | до 7Вт | ШИМ контроллер со встроенным силовым ключом для простого блока питания | ||
TOP252-262 | 100..460* | 0.68…11 | до 244Вт | шим контроллер для источников питания средней мощности | ||
TOP264-271 | 100..400* | 2…11 | для качественных источников, до 244Вт | микросхема контроллера для импульсных источников питания | ||
TNY274-280 | 100..400* | 0.4…1.3 | встроенный источник собственного питания, до 36Вт | |||
NCP1010-1014 | 100..400* | 0.1…0.5 | встроенный источник собственного питания, | |||
ICE2Axxx | 100..400* | 0.5…7 | от 23 до 240Вт | |||
ALTAIR05-800 | ?…400* | 1 | квазирезонансный, ключ на 800В | ШИМ контроллер для импульсных источников питания, работающих в квазирезонансном режиме | ||
ALTAIR04-900 | ?…400* | 0.7 | квазирезонансный ключ на 900В | |||
UC3842-3845 КР1033ЕУ10, ЕУ11 | 7…30 | 1 | шим контроллер обратноходовых источников питания | |||
NCP1230-1238 | 7…18 | 0.5/0.8 | 3 фиксированных частоты, непосредственное подключение оптрона ОС | шим контроллер для обратноходовых импульсных преобразователей напряжения | ||
UCC28600 | 8…32 | 1/0.8 | квазирезонансный режим | шим контроллер для преобразователей напряжения | ||
L6565 | 10…18 | 0.7 | квазирезонансный режим | микросхема для обратноходовых преобразователей | ||
TDA4605 КР1033ЕУ2 | 7…20 | квазирезонансный режим | шим контроллер для Flyback преобразователей | |||
UCC38083-38086 | 4…15* | 1/0.5 | шим контроллер для источников питания мостовой и полумостовой схемой включения транзисторов | |||
MC33025 | 9…30 | 2*/0.5 | шим контроллер для двухтактных источников питания | |||
NCP1395 | 10…20 | резонансный | шим контроллер для двухтактных источников питания | |||
На главную | ||||||
www.trzrus.ru
взаимодействия с импульсными блоками и проверка мультиметром
Когда в какой-нибудь литературе мы встречаем незнакомое слово или понятие, мы хотим скорее узнать его определение. Зная точное определение можно дальше проследить сферу использования и методы применения главного действующего лица того или иного понятия. Сегодня мы ближе познакомимся с таким понятием как шим — контроллер.
Понятие шима
Прежде чем дать определение упомянутому словосочетанию, следует узнать или кому-то просто напомнить себе принцип нагревания силовых компонентов радиосхемы. Их сущность заключается в действии нескольких переключательных режимах. Все электросиловые компоненты в подобных радиосхемах всегда пребывают в двух состояниях. Первое — это открытое, а второе раскрытое. В чём разница между этими двумя состояниями? В первом случае компонент обладает нулевым током. Во втором же у компонента нулевое значение напряжения. Конечным результатом взаимодействия электросиловых компонентов с необходимой напряжённостью можно считать получения сигнала той формы, которая нужна согласно установленным правилам.
Шимом же называют специальный модулятор, предназначенный для контролирования времени открытия силового ключа. Время для открытия ключа устанавливается с учётом получаемого напряжения. Получить идеальный вариант сигнала возможно лишь в том случае, если перед преобразованием сигнал без затруднений прошёл все необходимые этапы. Какие это этапы из чего состоит формирование такого сигнала.
Особенности шим — контроллера
Сам процесс создания шим — сигналов очень непростой. Чтобы облегчить этот процесс, были придуманные специальные микросхемы. Именно микросхемы, участвующие в формировании шим — сигналов называют шим — контролёрами. Их существование в большинстве случаев помогает полностью решить проблему с формированием широко — импульсных сигналов. Чтобы легче понять миссию и значимость шим — контролёра, необходимо познакомиться с особенностями его строения. На сегодняшний день известно, что любой шим — контролёр, активно использующийся в электронике, обладает следующими составляющими:
- Вывод питания. Несёт большую ответственность за электрическое питание всех существующих схем. Нередко вывод питания путают с выводом контроля питания. Важно знать, что несмотря на похожие слова в названии, эти два понятия имеют совершенно разную характеристику. Это ещё раз наглядно докажет знакомство с выводом контроля питания.
- Вывод контроля питания. Эта составляющая часть микросхемы следит за состоянием показателей напряжения прямо на выводе микросхемы. Главная задача вывода контроля питания — это не допустить превышение расчётной отметки. Существует одна серьёзная опасность, а именно снижения напряжения на выходе. Если напряжения снижено, транзисторы начинают открываться наполовину. Из-за неполного открытия они быстро нагреваются и в конечном счёте могут быстро выйти из строя. Поэтому умеренное напряжение — это залог долгой работы транзисторов микросхемы шим — контроллеров.
- общий выход. Третий главный элемент схемы имеет форму ножки. Эта ножка, в свою очередь, подключена к общему проводу схемы, которые отвечает за питания всей системы.
Все три составляющих очень важны. Если хотя бы один из элементов по какой-то причине выходит из строя, работа всей микросхемы заметно ухудшается или совершенно прекращается.
Системы управления микросхемами
Важно знать не только из чего состоят микросхемы шим — контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим — контроль принимает активное участие. Вот их некоторые особенности:
- Цифровая система. В цифровой шим — системе все существующие процессы описываются цифровыми данными. Так на выходе в цифровом формате формируется показатель уровня напряжения. Заметим, что уровень напряжения может быть высокий (измеряется как 100%) и низкий (0%). Однако показатели напряжения, благодаря современным технологиям, можно изменять. Как? Необходимо изменить скважность импульсов. Только тогда изменится и напряжение. Любые совершенные перемены имеют свою частоту. Именно шим — контролёры регулируют описанные процессы. С их помощью вся система будет успешно работать. Эта специальная микросхема по праву называется сердцем всей цифровой системы шим — модуляторов.
А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.
Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.
Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей, нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.
А что можно сказать о «сердце системы». У шима — контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:
- Низкая стоимость.
- Стабильная работа.
- Высокая надёжность.
- Возможность экономить энергию.
- высокая эффективность преобразования сигналов.
Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.
- Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель — это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый — пилообразное напряжение высокой частоты. Второй сигнал — низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала.
Шим — контроллер в импульсных блоках питания
Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:
- Импульсный блок питания.
- аналоговые трансформаторные устройства.
В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим — контролёр.
Схема работы импульсного блока питания
Это устройство появилось на свет всего лишь несколько десятилетий назад. Однако уже успело стать популярным и востребованным. Импульсный блок питания состоит из следующих деталей:
- Фильтрующего конденсата.
- Ключевого силового транзистора.
- Сетевого выпрямителя, состоящего из нескольких элементов.
- Выпрямительных диодов выходной системы.
- Силовой дроссели. Дроссель помогает корректировать возникающее напряжение.
- Импульсивного источника питания. Именно отсюда напряжение преобразовывается в силовую цепь.
- Цепей управления выходного напряжения.
- Накопительной фильтрующей ёмкости;
- Оптопара;
- Задающего генератора.
- схемы обратной связи.
Зная состав импульсного блока, следует ознакомиться с принципом его работы.
Принцип работы импульсного блока
Принцип работы импульсного блока заключается в выдаче стабилизированного питающего напряжения на основе принципа взаимодействия элементов инертной системы. Вот поэтапные шаги, наглядно демонстрирующие всю суть деятельности такого блока питания:
- Передача сетевого напряжения на выпрямитель (осуществляется при помощи специальных проводов).
- С помощью фильтра выпрямителя происходит сглаживание напряжения. В этом процессе принимают участие и конденсаторы.
- с помощь диодного входного моста выпрямляются синусоиды. Далее при участии транзисторной системы проходящие синусоиды должны преобразоваться в высокочастотные импульсы. Зачастую импульсы имеют прямоугольную форму.
Но возникает вопрос, какую роль в импульсном блоке играют шим — контролёры. Мы постараемся дать ответ на него в следующем подзаголовке.
Роль шима — контроллера в работе импульсного блока
Шим — контроллеры играют важную роль в импульсном блоке. Он отвечает за процессы, связанные с широтно — импульсной модуляцией. Шим — контролёр способствует выработке импульсов, у которых одинаковая частота, но в то же время разная длительность включения. Все подаваемые импульсы соответствуют определённой логической единице. У импульсов одинаковая не только частота, но и одинаковая величина амплитуды. Продолжительность функционирования логической единицы может меняться в процессе её работы. Такие перемены помогают наилучшим образом управлять работой электронной системы.
Таким образом, шим — контролёр — одна из важных цепочек, участвующих в работе импульсного блока. В некоторых видах помимо шим — контролёра благополучное функционирование блока питания обеспечивает импульсный трансформатор и специальный каскад силовых ключей.
А в каких сферах используются импульсные блоки питания? В первую очередь, в электронике. Об этом речь пойдёт далее.
Особенности работы микросхемы или как может работать ноутбук
Компьютерный блок питания и роль шим — контролёра в нём Все современные компьютеры, в том числе и ноутбуки, оснащены импульсными блоками питания. Установленные в ноутбуке или в обычном компьютере блоки содержат индивидуальную микросхему шим — контролёра. Стандартной микросхемой считают микросхему TL494CN.
Прежде всего стоит сказать о главной задаче микросхемы TL494CN. Итак, главной задачей схемы является широтно — импульсная модуляция. Другими словами микросхема вырабатывает импульсы напряжения. Одни импульсы регулируемы, другие нет. В микросхеме предусмотренно примерно 6 способов выводов сигналов. Упомянем некоторые интересные подробности каждого вывода микросхемы ноутбука.
Первый вывод. Считается положительным входом усилителя сигнала ошибки. Уровень напряжения на первом выводе оказывает значительное влияние на функционирование последующих выводов. При низком напряжении при втором выводе у выхода усилителя ошибки будут низкие показатели. И напротив, при повышенном напряжении показатели усилителя ошибки повысятся.
Второй вывод. Второй же вывод является напротив отрицательным выходом для усилителя. Здесь показатели напряжения немного по-иному оказывают своё влияние на усилитель. Так, при высоком напряжении (выше чем на первом выводе) у выхода усилителя низкие показатели. В случае низкого напряжения усилитель обладает высокими данными.
Третий вывод. Служит неким контактным звеном. Перемены в уровне напряжения зависят от двух диодов, которыми наделен внутренний усилитель. Во время изменения уровня сигнала хотя бы на одном диоде меняется уровень напряжения всего усилителя. В некоторых случаях третий вывод обеспечивает скорость изменения ширины импульсов.
Четвёртый вывод. Способен управлять диапазон скважности всех выходных импульсов. Уровень поступаемого напряжения в четвёртом выводе влияет на ширину импульсов в микросхеме шим — контролёра.
Пятый вывод. Перед пятым выводом стоит немного другая задача. Он присоединяет врямязадующий конденсатор к заданной микросхеме. Ёмкость присоединённого конденсата оказывает значительное влияние на частоту выходных импульсов шим — контролёра.
Шестой вывод. Служит для подключения времязадающего регистра, который также влияет на частоту.
Все эти шесть выводов способствуют выполнению главной задачи, которая поставлена перед микросхемой шим — контролёра — выход импульсов с широкой модуляцией. А это действие, в свою очередь, влияет на работу импульсного блока, а значит и на работу ноутбука.
Если шим — контролёр выходит из строя
Временами шим — контролёры их схемы и источник питания (в том числе и встроенные в ноутбук) могут ломаться и выходить из строя. В таких случаях понадобится выявить неисправности (в одних случаях проверять необходимо источник питания, в других проверять стоит саму схему). Для этой цели были разработаны мультиметры. Мультиметры тщательно исследуют работоспособность шим — контролёров и при необходимости помогают устранить неисправности. Самыми распространёнными причинами, почему следует проверять эти устройства, считают нестабильную работу платы и изменения показателей напряжения. Если их устранить, техника будет работать.
instrument.guru
ШИМ | Электроника для всех
DC-DC преобразованиеДля изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ, она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ, то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.
Готовый девайс |
То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.
Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.
Если не догнал, то я для простоты переложил это в понятное «канализационное русло». Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль, он открывает и закрывает канал. Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.
Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу. Умные дядьки из Motorola, STM, Dallas и прочих Philips’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер. Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский 🙂
easyelectronics.ru
Все про широтно-импульсную модуляцию (ШИМ)
Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.
Область применения
С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.
Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.
Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.
Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.
Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.
Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.
ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:
- обеспечивает режим плавного пуска преобразователя;
- ограничивает амплитуду и скважность управляющих импульсов;
- контролирует уровень входного напряжения;
- защищает от короткого замыкания и превышения температуры силового ключа;
- при необходимости переводит устройство в дежурный режим.
Принцип работы ШИМ контроллера
Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.
Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.
Аналоговая ШИМ
Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.
Цифровая ШИМ
Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?
Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:
- высокой эффективности преобразования сигнала;
- стабильность работы;
- экономии энергии, потребляемой нагрузкой;
- низкой стоимости;
- высокой надёжности всего устройства.
Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.
Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.
Пример использования ШИМ регулятора
Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.
Читайте так жеledjournal.info
MP2359DJ неплохой мелкий ШИМ контроллер
Как обещал ранее, выкладываю обзор на радиолюбительскую тематику.Увидел как то на одном из форумов упоминание о данном ШИМ контроллере. А так как я иногда занимаюсь изготовлением всяких электронных устройств, то решил заказать для пробы.
Ну а раз уж заказал, да еще и получил (в последнее время это происходит не всегда), то перед подтверждением получения ведь неплохо бы его и проверить.
Описание, проверка, результаты, все под катом.
Вообще получил я данные микросхемы очень давно, но проверить время нашлось только сейчас.
Заказаны они были в районе Нового года, а получил я их 3 февраля.
Продавец приятно удивил несколько раз, за что ему в отзыв будет добавлена ссылка на обзор.
Для начала он быстро выслал микрухи, а потом сам продлил срок защиты заказа, без напоминания.
На это я ему написал, что микросхемы получил, но подтверждение сделаю после проверки.
Пришли микросхемы в самом обычном бумажном конвертике с пупыркой, хотя недавно получил светодиод в полиэтиленовом пакете вообще без какой либо защиты.
MP2359DJ неплохой мелкий ШИМ контроллерВторое что удивило, продавец положил не 10 микросхем, а 11. Оно как бы мелочь, 20 центов, но приятно. можно сказать что одна микросхема на эксперименты 🙂MP2359DJ неплохой мелкий ШИМ контроллер
Микросхемы в корпусе SOT-23-6, маркировка присутствует с обеих сторон.
Внешне претензий у меня не возникло, хотя скотч, которым была замотана лента, сначала немного насторожил.MP2359DJ неплохой мелкий ШИМ контроллер
Данная микросхема является понижающим ШИМ контроллером со встроенным силовым транзистором
Для начала технические характеристики (перевод из даташита), полный даташит на английском доступен по ссылке.
Пиковый выходной ток — 1.2 Ампера
Сопротивление внутреннего полевого транзистора — 0.35 Ома
Стабильная работа с выходным LowESR керамическим конденсатором
КПД до 92%
0.1мкА потребление в дежурном режиме.
Фиксированная частота работы 1.4МГц
Защита от перегрева
Ограничение максимального тока в каждом такте.
Диапазон входного напряжения 4.5-24 Вольта
Выходное напряжение 0.81-15 Вольт
Типовая схема включения имеет небольшое количество внешних компонентов.
Есть конечно микросхемы где компонентов еще меньше, но как по мне, то и так вполне нормально.
Внутреннее устройство микросхемы.
Пожалуй из минусов микросхемы (и то условно) можно назвать лишь то, что в качестве силового применен N канальный транзистор. Это добавляет сложности, необходимость применения внешнего конденсатора и невозможность микросхеме обеспечить 100% цикл, так как необходимо время для перезарядки внешнего конденсатора питания драйвера.
Но у такого решения есть и плюс, N канальные транзисторы обычно имеют лучшие характеристики в сравнении с Р канальными.
Также большим плюсом является низкое опорное напряжение, составляющее всего 0.81 Вольта, позже я объясню почему.
MP2359DJ неплохой мелкий ШИМ контроллерТакже есть и усложненная схема применения этой микросхемы.
При входном напряжении менее 5 Вольт желательно установить дополнительный диод D3.
При выходном напряжении менее 5 Вольт желательно установить диод D2
В остальных ситуациях дополнительные компоненты не требуются.MP2359DJ неплохой мелкий ШИМ контроллер
Выше я написал что микросхема имеет низкое опорное напряжение.
Это позволяет сделать на ее базе простой драйвер для светодиодов.
Дело в том, что чем выше это напряжение, тем больше будут потери на токоизмерительном шунте. Запустить так можно большинство микросхем, но чем напряжение ниже, тем выше будет КПД такого драйвера.
Да и просто всегда лучше иметь запас в нижнюю сторону, так как большая часть известных мне простых ШИМ контроллеров имеет 1.23-2.5 Вольта.MP2359DJ неплохой мелкий ШИМ контроллер
Так как мне надо было проверить то, что я получил, то пришлось собрать небольшую тестовую платку.
Собирать я решил по простому варианту схемы, хотя и с изменениями, обусловленными тем, что собирал «из того, что было».
Изменения коснулись конденсаторов.
Производитель рекомендует емкость входного и выходного конденсатора 10 и 22мкФ, я применил 2х2.8 и 2х5.6 соответственно, т.е. примерно в 2 раза меньше.
Также конденсатор питания драйвера рекомендуется ставить около 10нФ, с дополнительными диодами до 1мкФ, но я поставил 0,1мкФ без всяких диодов.
Диод поставил также из того что было, банальный SS34.
Дроссель рекомендуется ставить на 4.7мкГн, у меня был на 10мкГн.
Т.е. я сознательно ухудшил характеристики преобразователя, а кроме того хотел проверить как ведет себя микросхема при номиналах отличных от даташита.
MP2359DJ неплохой мелкий ШИМ контроллерПечатную плату я сначала страссировал свою, но она мне не нравилась и я решил сделать так как рекомендует производитель.
Вообще трассировка таких вещей дело довольно ответственное, мало просто соединить выводы как надо по схеме, требуется соблюсти правильно топологию платы, так как это может влиять на многие вещи.
Например неправильная разводка платы может увеличить пульсации напряжения на выходе, а может вовсе привести к полной неработоспособности устройства.
Так видит плату производитель.
А такую плату страссировал я.
Ну дальше все в принципе просто. плата изготавливалась по ЛУТ технологии, которую я описывал здесь. Только после того я уже купил еще бумаги, самое недорогое предложение оказалось как ни странно в магазине Бангуд, рекомендую.
Единственно, я как то забыл про то что у меня травится плата и передержал ее, потому результат вышел хуже.
Для платы использовался текстолит толщиной 1мм. Кстати. Текстолит отличный, когда плата вытравлена, то он полупрозрачный, сейчас ищу такой текстолит, желательно стандартный лист.MP2359DJ неплохой мелкий ШИМ контроллер
Подобрал компоненты.
Резисторы делителя обратной связи можно легко рассчитать зайдя на эту страничку, думаю понятно и без объяснений что есть что 🙂
Исходные данные — 5 Вольт на выходе, 0.81 Вольта напряжение на выходе делителя.
Я выбрал номинал верхнего резистора 10к, программа выдала номинал нижнего как 2к.
Конденсаторы выпаяны из платы от какого то монитора, дроссель и диод новые.MP2359DJ неплохой мелкий ШИМ контроллер
В итоге у меня получилась небольшая и почти аккуратная платка.MP2359DJ неплохой мелкий ШИМ контроллер
Размеры платы около 23 х12,5ммMP2359DJ неплохой мелкий ШИМ контроллер
Сначала я протестировал платку при помощи «стенда», состоящего из:
Блока питания
Электронной нагрузки
Мультиметра
Осциллографа
Бесконтактного термометра
Был протестирован нагрев и работа под нагрузкой.
MP2359DJ неплохой мелкий ШИМ контроллерНо так как кроме нагрева меня интересовал еще и КПД, то пришлось воспользоваться еще одним мультметром.
Дело в том, что амперметр блока питания имеет больше погрешность чем мультиметр, а мне хотелось получить более точные результаты измерения.
Так как нагрузка была неизменна, то я сгруппировал фото измерения потребляемого тока и осциллограммы, полученные в прошлом тесте.
Входное напряжение 10 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.84 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.80 Вольт
В обоих случаях пульсации были на грани чувствительности при том, что щуп стоял в режиме 1:1.
Входное напряжение 15 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
Ситуация с уровнем пульсаций аналогична первому тесту.MP2359DJ неплохой мелкий ШИМ контроллер
Входное напряжение 20 Вольт
1. Ток нагрузки 0.6 Ампера, выходное напряжение 4.83 Вольта
2. Ток нагрузки 1.2 Ампера, выходное напряжение 4.81 Вольта
И опять уровень пульсаций на грани чувствительности.MP2359DJ неплохой мелкий ШИМ контроллер
После этого я проверил плату еще в нескольких режимах, но уже без фото.
1. Собственное потребление преобразователя составляет 1.3мА при 10 Вольт и 1.4мА при 20 Вольт. Из этих 1.3-1.4мА около 0.3мА потребляет делитель обратной связи. Так что с собственным потреблением (не в дежурном режиме) все отлично.
2. Проверка работы преобразователя в режиме КЗ. Ток потребления по входу составляет около 0.1 Ампера в диапазоне входного напряжения 10-20 Вольт. Микросхема в этом режиме начинает нагреваться.
3. Так как в режиме КЗ я получил нагрев микросхемы, то проверил и работу термозащиты.
После достижения температуры корпуса микросхемы около 100 градусов (сложно измерять температуру такого мелкого компонента), микросхема перешла в старт/стоп режим с частотой около 0.5Гц. Ток потребления в паузах снижался до 50мА.
Если убрать перегрузку, то микросхема сразу переходила в нормальный режим работы.
В даташите была найдена табличка со значениями КПД а разных режимах.
Я проверял при немного других входных напряжениях, но не думаю что это критично.
Как можно видеть из графика, максимальный КПД микросхема имеет при выходном токе около 0.6 Ампера и входном напряжении 12 Вольт.
Мои расчеты показали, что преобразователь реально имеет КПД почти 92%, но при входном напряжении около 15 Вольт.
Но опять же, оговорюсь, я использовал компоненты, которые на КПД сказались скорее отрицательно, чем положительно, но даже в таком варианте КПД не падал ниже чем 87.7%.
Резюме.
Плюсы
Цена
Корректная отработка защиты от превышения выходного тока и КЗ
Не менее корректная работа защиты от перегрева
Неплохой КПД
Простая схема, нет необходимости применять большие электролитические конденсаторы
Очень низкий уровень пульсаций
Частота работы 1.4МГц
Низкое напряжение встроенного ИОНа, составляющее 0.81 Вольта
Отличный продавец
Минусы
Пожалуй невозможность 100% рабочего цикла, так как требуется время на зарядку конденсатора питания драйвера.
Мое мнение. Микросхема понравилась, недорого, просто, отлично работает, да и продавцу зачет.
Конечно есть микросхемы лучше, с синхронным выпрямителем, на больший ток, но мне больше не надо было, а габарит, простота и цена перевесили эти преимущества.
В общем рекомендую.
В качестве дополнительных материалов предлагаю архив с даташитом, схемой и трассировкой — ссылка.
www.kirich.blog