Самый популярный советский осциллограф. Часть 2 — первая копия
Часть 1
В СССР следили за новинками зарубежной техники и копировали наиболее удачные экземпляры. Популярный американский осциллограф Tektronix 453 привлек внимание отечественных приборостроителей и было решено сделать советскую копию.
Тут надо сделать отступление и рассказать о советской приборостроительной
отрасли вообще и осциллографостроении в частности. В отличие от США, где
конструкторские бюро всегда входили в состав фирм-производителей, в СССР
проектировщики существовали более-менее отдельно в виде НИИ, а разработанное
изделие потом внедрялось в производство на заводе. Кроме того, практически
все НИИ по разработке измерительных проборов, а также заводы по их выпуску
относились к военно-промышленному комплексу и, в том числе, делали
оборудование для министерств общего машиностроения (ракетчики) и среднего
машиностроения (атомщики). 90% разработок курировалось военными заказчиками,
хотя непосредственно военными финансировалась примерно четверть всех работ,
остальное предназначалось для промышленности, НИИ и т.д. Все это вместе
сильно затрудняет поиск информации по измерительным приборам — когда и где
разработаны, когда и в каком количестве выпускались. Часто в документации
на прибор производитель был не указан вообще, могла быть только вклеенная
бумажка: по претензиям обращаться город такой-то, п/я такой-то.
Единственным простым указанием на производителя был логотип
завода-изготовителя на передней панели прибора (если он был проставлен, так
как даже размещали его не всегда).
Осциллографами в СССР в основном занимались четыре НИИ:
— Вильнюсский научно-исследовательский институт радиоизмерительных приборов (ВНИИРТИ), исходно НИИ-555 при заводе 555. Он был основан в 1949 году, хотя разработкой осциллографов — первым в СССР — начал заниматься раньше, до выделения из состава завода. Первый осциллограф (С1-1) был выпущен заводом в 1948 году.
— Львовский научно-исследовательский радиотехнический институт (ЛНИРТИ), основан в 1956 году как СКБ 125-го завода. Первой разработкой был осциллограф С1-13 (1959 год). Специализировался на малогабаритных осциллографах для жестких условий эксплуатации.
— Горьковский научно-исследовательский приборостроительный институт (ГНИПИ), исходно НИИ-11, ныне ННИПИ. Основан в 1949 году, но осциллографами стал заниматься позже. Специализировался на широкополосных и стробоскопических осциллографах. С 1956 года был головным предприятием по разработке измерительных приборов.
— Минский научно-исследовательский приборостроительный институт (МНИПИ), основан в 1954 году, осциллографами стал заниматься существенно позже, примерно в начале 70-х годов.
Конечно, все НИИ разрабатывали самые разные типы измерительных приборов и осциллографы были только одним из направлений. Кроме того, были и другие разработчики, например, отдельные модели создавались в ОКБ при заводах.
Заводов было много, не один десяток, хотя нередко разработка передавалась НИИ на «свой» завод. У ВНИИРТИ это был Вильнюсский завод радиоизмерительных приборов (ВЗРИП), исходно завод 555, основанный в 1946 году. Именно на нем впервые в СССР был налажен выпуск осциллографов. У ЛНИРТИ — Львовское объединение радиотехнической аппаратуры (ЛОРТА), исходно «Измеритель», завод 125, оно занималось радиотехнической аппаратурой с 1956 года. Конкретно осциллографы большей частью выпускал Червоноградский завод радиоаппаратуры, входящий в ЛОРТА. У МНИПИ «своим» заводом был Минский приборостроительный завод, основанный еще до войны и занимавшийся измерительными приборами с 1950 года. В 1971 году на его базе создали Минское производственное объединение (МПО) имени Ленина, ныне «Белвар». Кроме того, осциллографы в немалом количестве производились и на Минском заводе «Калибр», который был основан в 1948 году как патефонный, а в 1962 году переименован в «Радиоприбор», после чего на нем стали выпускать измерительные приборы.
Законодателями на рынке осциллографов долгое время были американцы. Основатели фирмы Tektronix, Говард Вольюм и Джек Мердок, изобрели систему синхронизации, позволяющую получить на экране устойчивую картинку, также они впервые наложили на экран калиброванную сетку, благодаря чему осциллограф стал полноценным измерительным прибором. Поэтому не удивительно, что именно Tektronix оказалась одним из ведущих мировых производителей осциллографов. В 60-х годах заметным игроком стала фирма Hewlett-Packard, но к 70-м годам Tektronix вновь вырвалась вперед. Так, в 70-е годы на 70% всех производимых в мире осциллографов стояла эмблема Tektronix. Другие производители оказались в роли догоняющих, копируя удачные технические решения. Разработчики осциллографов в СССР, конечно, исключением не были.
Первой моделью разработки львовского ЛНИРТИ по тематике портативных осциллографов был С1-35 (1965-1966 годы) — копия Tektronix 321 (выпускался с 1960 до 1972 год с модификациями; один из первых в мире портативных транзисторных осциллографов). Копия получилась достаточно качественная, параметры (в т.ч. полоса 5 МГц) повторяли оригинал. Конструктив был аналогичный, как и всякие особенности, включая возможность работы от низковольтового источника постоянно тока (батарей). Правда, по дизайну C1-35 уступал Tektronix 321. Кстати, около 1972 года вместо С1-35 стали выпускать С1-49 с практически такими же параметрами и в таком же корпусе.
Вверху Tektronix 321 в первом и обновленном вариантах,
ниже С1-35 и С1-49.
[отсюда]
[отсюда] и [отсюда]
Так вот, в СССР не могли пройти мимо очень удачной модели, каковой оказался Tektronix 453, и ЛНИРТИ взялся за его воспроизведение. Модель получила обозначение С1-64. Конструктив был повторен практически один в один — та же рама с быстросъемными крышками, закрывающий переднюю панель кожух на защелках, пропорции экрана, ручка для переноски с фиксированными положениями, дизайн органов управления, регулировки на правой боковой стенке. Даже цвет был такой же, серовато-синий! Схемотехника также была скопирована, включая входные каскады на нувисторах. Также в наличии был и вентилятор на задней стенке. Характеристики, правда, получились чуть хуже — полоса 40 МГц, масса 19 кг, потребляемая мощность 150 Вт (у оригинала 52.5 МГц, 13.2 кг и 100 Вт соответственно). Хотя, как говорят, реальные характеристики оказывались существенно лучше, так как указанные в ТТХ параметры были даны с большим запасом. Также наверняка была разница в характеристиках между приборами с обычной гражданской и военной приемкой. По крайней мере некоторые экземпляры имели реальную полосу более 100 МГц.
[отсюда]
Принцип открытия корпуса аналогичен Tektronix, также на правой стороне
корпуса присутствуют разъемы и регулировки.
[отсюда]
Вид сзади. Питание подается через круглый разъем типа 2РМ, часто
применяемый в военной технике. Как и у оригинала Tektronix, присутствует
вентилятор. Ножки в виде катушек для намотки шнура.
[отсюда]
Внутренняя компоновка также аналогична оригиналу.
[отсюда]
Внешний вид С1-64 в деталях немного отличался от оригинала Tektronix,
например, у Tek 453 верхняя и нижняя крышки корпуса были несимметричные
(у С1-64 — симметричные), защелки на ручках у Tek 453 круглые (у С1-64 —
прямоугольные), кроме того, несколько различалось расположение кнопок
и ручек, хотя дизайн самих органов управления был очень похож. Также
у Tek 453 крышка на переднюю панель имела отсек для щупов, тогда как
у С1-64 его не было. Но общего, тем не менее, очень много.
Вверху Tektronix 453, внизу С1-64.
[отсюда]
[отсюда]
Точную дату разработки и начала производства найти не удалось, но это
было в начале 70-х годов, во всяком случае выпуск был налажен не
позднее 1971 года. Производился осциллограф на Червоноградском заводе ЛОРТА.
В конце 70-х — начале 80-х годов осциллограф был модернизирован и получил
обозначение С1-64А. Отличия от С1-64 были фактически те же, что и между
Tektronix 453 и 453A: нувисторы заменены на полевые транзисторы, увеличен
размер экрана. В таком виде ЛОРТА выпускала осциллограф до конца 80-х годов.
[отсюда]
На отечественные осциллографы часто ставился счетчик времени наработки,
справа с горизонтальной шкалой именно он.
[отсюда]
Tektronix 454, имевший полосу частот 150 МГц, также не остался без внимания, и в 70-х годах была предпринята попытка не то скопировать его, не то увеличить полосу С1-64 своими силами. Осциллограф получил обозначение С1-71, имел полосу 100 МГц и время переходной характеристики 4 нс, но был одноканальным. Схема входных каскадов была все той же, с нувисторами. Конструктив взяли от С1-64, изменилась только передняя панель. Производила их, как и С1-64, ЛОРТА, но выпущено было мало — возможно, результат оказался не слишком удачным.
[отсюда]
Количество органов управления сильно меньше по сравнению с С1-64.
[отсюда]
Вид справа, окно для дополнительных регулировок и разъемов
не предусмотрено.
[отсюда]
Задняя стенка немного отличается, но компоновка осталась прежней.
Причем вся стенка представляет собой массивную алюминиевую плиту
с ребрами, которая используется как радиатор для транзисторов.
[отсюда]
Внутри тоже видны некоторые отличия в компоновке от С1-64.
[отсюда]
Однако тема получила продолжение и в конце 70-х — самом начале 80-х годов (не позднее 1980 года) все та же ЛОРТА начала выпуск осциллографа С1-79. Это была двухканальная версия С1-71, с полосой 100 МГц. Корпус остался прежним, разработанным еще для С1-64. Что интересно, экран тоже остался узким, как на С1-64 и С1-71, хотя в это время если не выпускали, то заканчивали подготовку к выпуску С1-64А с широким экраном.
Корпус остался примерно таким же, но компоновка разъемов, ручек
и переключателей существенно изменилась.
[отсюда]
Функциональные группы органов управления выделены не линиями, как
на предыдущих моделях, а окраской.
[отсюда]
Правда, попадаются и совсем «лысые» экземпляры.
[отсюда]
Вид слева и справа.
[отсюда]
[отсюда]
Вид сзади. Картина знакомая, только сверху прикручен кожух.
[отсюда]
Внутри компоновка существенно отличается.
[отсюда]
Но самым популярным советским осциллографом стал не С1-64 и его
последователи. Об этом в третьей части.
Часть 3
is000.livejournal.com
Осциллограф: история и классификация — Masteram
Осциллограф – это один из самых важных и незаменимых инструментов для анализа электрических сигналов, без которого невозможно представить себе ни одну мастерскую, не говоря уже о крупных сервисных центрах. Осциллографы предназначены для визуализации амплитудных изменений подаваемого на них сигнала во временном разрезе и позволяют наблюдать, измерять, а также записывать этот сигнал. Современные осциллографы являются отличными инструментами для тестирования, отладки и устранения неполадок, потому что с их помощью можно определять работоспособность отдельно взятых электронных компонентов, а также модулей в сборе.
История осциллографов берет свое начало с 1893 года, когда французский физик Андре Блондель представил миру собственноручно построенный магнитоэлектрический осциллограф с бифилярным подвесом. Данный прибор позволял регистрировать значения электрических величин, таких как интенсивность переменных токов, на движущейся ленте записи при помощи чернильного маятника, подсоединенного к катушке. Так как при работе использовались сразу несколько механических приспособлений, первые осциллографы были не слишком точными и имели очень малую полосу пропускания, в диапазоне 10-19 кГц.
Полностью автоматический ондограф Госпиталье — предшественник магнитоэлектрического осциллографа с бифилярным подвесом Андре БлонделяПо настоящему осциллографы эволюционировали с появлением электронно-лучевой трубки (CRT), которую изобрел в 1897 году немецкий физик Карл Браун. A.C. Cossor – британская компания, которая первой в мире адаптировала данную технологию, представив в 1932 году первый осциллограф на ЭЛТ.
По окончанию Второй мировой войны измерительные приборы, а с ними, соответственно, и осциллографы, преуспевали в развитии во всех частях мира, но в первую очередь это было заметно в Европе и Америке. В 1946 году Говард Воллюм и Мелвин Джек Мердок основали компанию Tektronix, которая вскоре стала мировым лидером в осциллографии. В том же году Воллюм и Мердок изобрели свой первый осциллограф со ждущей разверткой. Они использовали эту технологию в модели 511, которая имела полосу пропускания 10 МГц. Ждущей разверткой в осциллографе принято считать развертку, которая срабатывает только во время протекания наблюдаемого электрического импульса.
В 1950-х годах практически во всех технически развитых странах стали производить эти приборы, благодаря чему осциллографы превратились в универсальный инструмент для измерений. Полоса пропускания и точность осциллографов стремительно увеличивались, сначала с появлением первых промышленных аналоговых моделей, а затем и с появлением цифровых осциллографов в 1985-м году. Этот год можно с уверенностью назвать одной из ключевых точек в истории развития осциллографии. Именно в этом году для исследовательского центра CERN был разработан первый в мире цифровой запоминающий осциллограф. Созданием данного прибора руководил Уолтер ЛеКрой (Walter LeCroy), основатель компании LeCroy. Начиная с 1980-х годов рынок цифровых осциллографов развивался невероятными темпами, благодаря чему эти приборы по сей день являются незаменимыми.
Как и в случае с любым другим электронным оборудованием, по способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые. Оба типа, конечно же, обладают своими плюсами, минусами и уникальными характеристиками, поэтому давайте все же рассмотрим их более детально.
Аналоговый осциллограф
Единичные экземпляры аналоговых осциллографов все еще можно встретить на рабочих столах мастеров старой закалки, которые в меру своей привычки не могут перейти в эпоху цифрового измерения сигналов. Но даже такие редкие аналоговые модели постепенно вытесняются цифровыми собратьями, потому что ситуация на рынке измерительных приборов аналогична рынку персональных компьютеров, где стоимость компонентов постоянно снижается.
Практически любой аналоговый осциллограф должен быть оснащен одним или несколькими вертикальными каналами, горизонтальным каналом, временной базой, схемой запуска (спусковой схемой), и, конечно же, ЭЛТ модулем. Вертикальный канал должен содержать компенсированный аттенюатор, предусилитель, линию задержки и вертикальный усилитель, который предназначен для усиления сигнала до нужного для ЭЛТ модуля уровня. Горизонтальный канал может использоваться в двух разных режимах работы: внутреннем и внешнем. Оба режима горизонтального канала, по аналогии с вертикальным, работают через горизонтальный усилитель.
Временная база в основном состоит из триггеров, интегрирующего усилителя, а также схем для суммирования и инвертирования.
Схема запуска состоит из селектора фронта, триггера и схемы производного действия. Селектор фронта предназначен для переключения между спадающим и нарастающим фронтом. Схема триггера Шмитта, которая выводит сигнал прямоугольной формы, синхронизируется с другими спусковыми событиями. Управление уровнем запуска (спуска) производится посредством изменения переходного напряжения триггера Шмитта.
ЭЛТ модулем принято называть специальную вакуумную трубку, содержащую электронную пушку, набор горизонтальных и вертикальных отклоняющих пластин, несколько электронных линз, а также дисплей, окрашенный внутри слоями флуоресцентного и фосфоресцентного покрытия.
В большинстве случаев полоса пропускания аналоговых осциллографов исчисляется несколькими сотнями мегагерц, а основным «ограничителем» полосы является именно ЭЛТ модуль. Такие приборы могут использоваться для отображения в реальном времени моментальных изменений сигналов, так как весь процесс вывода сигнала на экран не проходит цифровую обработку. К аналоговым осциллографам такие понятия, как буферизация, обработка входного сигнала и другие термины, относящиеся к современным цифровым моделям, конечно же, неприменимы. Подающиеся на вход сигналы непрерывно отображаются с небольшой задержкой, обусловленной непосредственно компонентами электронных схем прибора.
Цифровой осциллограф
Как правило, цифровые осциллографы разделяют на три основных подтипа:
- запоминающий осциллограф (DSO), использующий технологию выборки в реальном времени;
- стробоскопический осциллограф (DSaO), использующий выборку в эквивалентном масштабе времени;
- фосфорный осциллограф (DPO), использующий продвинутые технологии выборки и обработки сигналов.
Цифровые запоминающие осциллографы появились благодаря технологической эволюции гибридных аналогово-цифровых преобразователей (ADC), ответственных за быстрое и точное оцифровывание высокочастотных сигналов, а также благодаря разработкам в сфере запоминающих устройств, которые в подобных приборах должны сохранять данные настолько быстро, насколько осуществляется выборка, и компактных дисплейных модулей с низким энергопотреблением. По сути, запоминающие осциллографы используют аналогово-цифровые преобразователи для представления данных о сигналах в цифровом формате.
Цифровым стробоскопическим осциллографом принято называть прибор, который для получения изображения формы сигнала использует упорядоченную/случайную выборку мгновенных значений исследуемого сигнала и осуществляет его временное преобразование. Принцип работы подобного осциллографа базируется на стробоскопическом эффекте, поэтому DSaO использует измерение мгновенных значений повторяющихся сигналов при помощи коротких стробоскопических импульсов. Благодаря этому принципу такие осциллографы обеспечивают широкую полосу пропускания и обладают высокой чувствительностью.
Цифровые фосфорные осциллографы – это наиболее развитый и высокотехнологичный тип осциллографов, которые существуют на сегодняшний день. DPO отображают сигнал в трех плоскостях, что в какой-то мере можно сравнить с производительностью аналогового осциллографа: временном, амплитудном и амплитудном в течении времени (интенсивность). Такие осциллографы обладают высокой плотностью выборки, а также присущей подобным приборам способностью захватывать данные по интенсивности исследуемого сигнала. Дисплей DPO значительно облегчает распознавание основной формы сигнала от его переходных характеристик — картинка основного сигнала выглядит значительно ярче.
Тенденции развития
Традиционно, производство современных цифровых осциллографов ориентировано на разработку устройств с более широкой полосой пропускания и увеличение быстродействия. На сегодняшний день полоса пропускания осциллографов ведущих производителей достигает 6-7 ГГц и даже больше (у некоторых осциллографов для расширенного анализа сигналов).
С другой стороны, есть тенденция к разработке портативных устройств. Эти устройства не будут иметь характеристик лабораторных осциллографов, но являются компактными, мобильными, и имеют привлекательную цену. По размерам и форм-фактору они очень напоминают современный мобильный телефон.
Разработаны также USB-осциллографы, которые работают в паре с персональным компьютером, и превращают его в измерительное устройство. Управление происходит с ПК, а сигнал отображается на его экране. Как правило, это небольшое и легкое устройство. С его помощью можно легко проводить обработку сигнала (которую на самом деле выполняет ваш ПК). Преимуществом является то, что сигнал можно легко сохранить, обработать, распечатать или переслать.
В заключение
Осциллограф – это невероятно полезный в работе инструмент и, наверное, одна из лучших инвестиций, которую вы можете сделать, занимаясь ремонтом, отладкой и тестированием различной техники. В ассортименте нашего магазина представлен широкий выбор цифровых осциллографов, от бюджетных вариантов до высокотехнологичных производительных моделей. Если у вас возникли вопросы по выбору такого прибора, обращайтесь в нашу службу технической поддержки, где вам обязательно помогут.
Дмитрий Мамчурmasteram-online.ru
Осциллограф: история и классификация — ToolBoom
Осциллограф – это один из самых важных и незаменимых инструментов для анализа электрических сигналов, без которого невозможно представить себе ни одну мастерскую, не говоря уже о крупных сервисных центрах. Осциллографы предназначены для визуализации амплитудных изменений подаваемого на них сигнала во временном разрезе и позволяют наблюдать, измерять, а также записывать этот сигнал. Современные осциллографы являются отличными инструментами для тестирования, отладки и устранения неполадок, потому что с их помощью можно определять работоспособность отдельно взятых электронных компонентов, а также модулей в сборе.
История осциллографов берет свое начало с 1893 года, когда французский физик Андре Блондель представил миру собственноручно построенный магнитоэлектрический осциллограф с бифилярным подвесом. Данный прибор позволял регистрировать значения электрических величин, таких как интенсивность переменных токов, на движущейся ленте записи при помощи чернильного маятника, подсоединенного к катушке. Так как при работе использовались сразу нескольких механических приспособлений, первые осциллографы были не слишком точными и имели очень малую полосу пропускания, в диапазоне 10-19 кГц.
Полностью автоматический ондограф Госпиталье — предшественник магнитоэлектрического осциллографа с бифилярным подвесом Андре БлонделяПо настоящему осциллографы эволюционировали с появлением электронно-лучевой трубки (CRT), которую изобрел в 1897 году немецкий физик Карл Браун. A.C. Cossor – британская компания, которая первой в мире адаптировала данную технологию, представив в 1932 году первый осциллограф на ЭЛТ.
По окончанию Второй мировой войны измерительные приборы, а с ними, соответственно, и осциллографы, преуспевали в развитии во всех частях мира, но в первую очередь это было заметно в Европе и Америке. В 1946 году Говард Воллюм и Мелвин Джек Мердок основали компанию Tektronix, которая вскоре стала мировым лидером в осциллографии. В том же году Воллюм и Мердок изобрели свой первый осциллограф со ждущей разверткой — они использовали эту технологию в модели 511, которая имела полосу пропускания 10 МГц. Ждущей разверткой в осциллографе принято считать развертку, которая срабатывает только во время протекания наблюдаемого электрического импульса.
В 1950-х годах практически во всех технически развитых странах стали производить эти приборы, благодаря чему осциллографы превратились в универсальный инструмент для измерений. Полоса пропускания и точность осциллографов стремительно увеличивались, сначала с появлением первых промышленных аналоговых моделей, а затем и с появлением цифровых осциллографов в 1985-м году. Этот год можно с уверенностью назвать одной из ключевых точек в истории развития осциллографии. Именно в этом году для исследовательского центра CERN был разработан первый в мире цифровой запоминающий осциллограф. Созданием данного прибора руководил Уолтер ЛеКрой (Walter LeCroy), основатель компании LeCroy. Начиная с 1980-х годов рынок цифровых осциллографов прогрессировал невероятными темпами, благодаря чему эти приборы по сей день являются незаменимыми.
Как и в случае с любым другим электронным оборудованием, по способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые. Оба типа, конечно же, обладают своими плюсами, минусами и уникальными характеристиками, поэтому давайте все же разберем их более детально.
Аналоговый осциллограф
Единичные экземпляры аналоговых осциллографов все еще можно встретить на рабочих столах мастеров старой закалки, которые в меру своей привычки не могут перейти в век цифрового измерения сигналов. Но даже такие редкие аналоговые модели постепенно вытесняются цифровыми собратьями, потому что ситуация на рынке измерительных приборов аналогична рынку персональных компьютеров, где стоимость компонентов постоянно снижается.
Практически любой аналоговый осциллограф должен быть оснащен одним или несколькими вертикальными каналами, горизонтальным каналом, временной базой, схемой запуска (спусковой схемой), и, конечно же, ЭЛТ модулем. Вертикальный канал должен содержать компенсированный аттенюатор, предусилитель, линию задержки и вертикальный усилитель, который предназначен для усиления сигнала до нужного для ЭЛТ модуля уровня. Горизонтальный канал может использоваться в двух разных режимах работы: внутреннем и внешнем. Оба режима горизонтального канала, по аналогии с вертикальным, работают через горизонтальный усилитель.
Временная база в основном состоит из триггеров, интегрирующего усилителя, а также схем для суммирования и инвертирования.
Схема запуска состоит из селектора фронта, триггера и схемы производного действия. Селектор фронта предназначен для переключения между спадающим и нарастающим фронтом. Схема триггера Шмитта, которая выводит сигнал прямоугольной формы, синхронизируется с другими спусковыми событиями. Управление уровнем запуска (спуска) производится посредством изменения переходного напряжения триггера Шмитта.
ЭЛТ модулем принято называть специальную вакуумную трубку, содержащую электронную пушку, набор горизонтальных и вертикальных отклоняющих пластин, несколько электронных линз, а также дисплей, окрашенный внутри слоями флуоресцентного и фосфоресцентного покрытия.
В большинстве случаев полоса пропускания аналоговых осциллографов исчисляется несколькими сотнями мегагерц, а основным «ограничителем» полосы является именно ЭЛТ модуль. Такие приборы могут использоваться для отображения в реальном времени моментальных изменений сигналов, так как весь процесс вывода сигнала на экран не проходит цифровую обработку. К аналоговым осциллографам такие понятия, как буферизация, обработка входного сигнала и другие термины, относящиеся к современным цифровым моделям, конечно же, неприменимы. Подающиеся на вход сигналы непрерывно отображаются с небольшой задержкой, обусловленнойнепосредственно компонентами электронных схем прибора.
Цифровой осциллограф
Как правило, цифровые осциллографы разделяют на три основных подтипа:
- запоминающий осциллограф (DSO), использующий технологию выборки в реальном времени;
- стробоскопический осциллограф (DSaO), использующий выборку в эквивалентном масштабе времени;
- фосфорный осциллограф (DPO), использующий продвинутые технологии выборки и обработки сигналов.
Цифровые запоминающие осциллографы появились благодаря технологической эволюции гибридных аналогово-цифровых преобразователей (ADC), ответственных за быстрое и точное оцифровывание высокочастотных сигналов, а также благодаря разработкам в сфере запоминающих устройств, которые в подобных приборах должны сохранять данные настолько быстро, насколько осуществляется выборка, и компактных дисплейных модулей с низким энергопотреблением. По сути, запоминающие осциллографы используют аналогово-цифровые преобразователи для представления данных о сигналах в цифровом формате.
Цифровым стробоскопическим осциллографом принято называть прибор, который для получения изображения формы сигнала использует упорядоченную/случайную выборку мгновенных значений исследуемого сигнала и осуществляет его временное преобразование. Принцип работы подобного осциллографа базируется на стробоскопическом эффекте, поэтому DSaO использует измерение мгновенных значений повторяющихся сигналов при помощи коротких стробоскопических импульсов. Благодаря этому принципу такие осциллографы обеспечивают широкую полосу пропускания и обладают высокой чувствительностью.
Цифровые фосфорные осциллографы – это наиболее развитый и высокотехнологичный тип осциллографов, которые существуют на сегодняшний день. DPO отображают сигнал в трех плоскостях, что в какой-то мере можно сравнить с производительностью аналогового осциллографа: временном, амплитудном и амплитудном в течении времени (интенсивность). Такие осциллографы обладают высокой плотностью выборки, а также присущей подобным приборам способностью захватывать данные по интенсивности исследуемого сигнала. Дисплей DPO значительно облегчает распознавание основной формы сигнала от его переходных характеристик — картинка основного сигнала выглядит значительно ярче.
Тенденции развития
Традиционно, производство современных цифровых осциллографов ориентировано на разработку устройств с более широкой полосой пропускания и увеличение быстродействия. На сегодняшний день полоса пропускания осциллографов ведущих производителей достигает 6-7 ГГц и даже больше (у некоторых осциллографов для расширенного анализа сигналов).
С другой стороны, есть тенденция к разработке портативных устройств. Эти устройства не будут иметь характеристик лабораторных осциллографов, но являются компактными, мобильными, и имеют привлекательную цену. По размерам и форм-фактору они очень напоминают современный мобильный телефон.
Разработаны также USB-осциллографы, которые работают в паре с персональным компьютером, и превращают его в измерительное устройство. Управление происходит с ПК, а сигнал отображается на его экране. Как правило, это небольшое и легкое устройство. С его помощью можно легко проводить обработку сигнала (которую на самом деле выполняет ваш ПК). Преимуществом является то, что сигнал можно легко сохранить, обработать, распечатать или переслать.
В заключение
Осциллограф – это невероятно полезный в работе инструмент и, наверное, одна из лучших инвестиций, которую вы можете сделать, занимаясь ремонтом, отладкой и тестированием различной техники. В ассортименте нашего магазина представлен широкий выбор цифровых осциллографов, от бюджетных вариантов до высокотехнологичных производительных моделей. Если у вас возникли вопросы по выбору такого прибора, обращайтесь в нашу техническую поддержку, где вам обязательно помогут.
Дмитрий Мамчурtoolboom.com
Как пользоваться осциллографом и для чего он вообще нужен. Часть I
- Краткая история
- Общий принцип работы
- Какие бывают осциллографы
- Основные характеристики
К осциллографам у меня особая любовь. Кому-то бентли нравятся, а кому-то осциллографы. У каждого свои причуды. Бентли мне тоже нравится, но в отличии от всех других её владельцев, мне еще и осциллографы нравятся! =)
Главная задача осциллографа: регистрировать изменения исследуемого сигнала и выводить его на экран для просмотра. Это самый незаменимый прибор в лаборатории радиолюбителя. Можно и частоту прикинуть и амплитуду посмотреть и, что часто ещё важней, форму сигнала изучить. Решил заниматься электроникой — обязательно купи.
Краткая история
История осциллографа насчитывает уже 100 с лишним лет. В разное время над усовершенствованием прибора работали такие известные люди как Адре Блондель, Роберт Андреевич Колли, Уильям Крукс, Карл Браун, И. Ценнек, А. Венельт, Леонид Исаакович Мандельштам и многие другие.
Кстати, а вы знали, что первое подобие осциллографа создали в Российской Империи? Это сделал В 1885 году русский физик Роберт Колли. Прибор назывался осциллометр. Осциллографы того времени сильно отличались от тех, что используются сейчас!
Общий принцип работы
Надо сказать, что сейчас существует огромное количество разных осциллографов. Но для нас важен общий принцип работы, который заключается в том, что прибор регистрирует изменение напряжения сигнала и выводит его на экран. Да, именно для этого и нужен осциллограф, и всё. Но это настолько важно для физиков и инженеров, что словами передать сложно. Важность этого прибора сравнима с открытием закона всемирного тяготения.
На картинке выше приведена типичная панель управления осциллографа. Куча всяки регуляторов, кнопочек, разъемов и экран. Ужас, как во всём это разобраться? Да легко. Поехали.
Никто не обидится, если я скажу, что у осциллографа два главных органа управления. Над ними обычно написано «Развертка» или «Длительность», «В/дел». Разберемся!
Сначала про «В/дел». На вход прибора ты можешь подавать сингал разной амплитуды. Захотел подал синусоиду с амплитудой в 1В, а захотел 0.2В или 10В. Как видно на картинке сверху, экран прибора обычно разделен на клеточки. Да, это та самая всем привычная декартова система координат. Так вот «В/дел» позволяет изменять масштаб по оси Y. Другими словами можно менять размер клеточки в вольтах. Если выбрать 0.1В и подать синусоиду амплитудо в 0.2В, тогда вся синусоида займёт на экране 4 клетки.
А при исследовании сигнала в реальной схеме амплитуда сигнала может быть такой, что весь сигнал не сможетпоместиться на экране прибора. Вот тогда ты и будешь крутить ручку регулировки «В/дел», устанавливая необходимый масшатб оси Y таким, чтобы увидеть весь сигнал.
Теперь про «Длительность». Большую часть истории развития электронных осциллографов они были аналоговыми. В качестве экрана использовались ЭЛТ (электронно-лучевые трубки). Те самые, что уже и в телевизорах трудно встретить. Кому интересно, посмотрите видео ниже. Оно прекрасно объясняет принцип рисования исследуемого сигнала на экране ЭЛТ-осциллографа. Либо читаем дальше, если лень смотреть, — я расскажу о самом главном.
Итак, ручка «длительность» («разёртка») нужна для того, чтобы задать с какой скоростью будет бегать луч на экране прибор слева на право. (Ты думал, что там рисуется линия целиком? Нет, это в современных цифровых приборах так, но оних позже) Для чего это нужно? Да собственно на этом и строится работа осциллографа. Луч бегает слева-направо, а подаваемый на вход сигнал просто отклоняет его вверх или вниз. В итоге ты и видишь на экране прибора красивую картинку синусоиды или какого-нибудь шума.
Ладно, зачем это нужно теперь понятно. Остался вопрос зачем менять скорость перемещения или, другими словами, частоту пробегания луча по экрану (частоту развертки)?
Может ты замечал сам или видел на каком-нибудь шоу или концерте такой эффект, что когда в темноте вспихивал яркий свет на долю секунды, тогда казалось, что все движение прекратилось, мир замер? Поздравляю ты подметил стробоскопический эффект. Есть даже такое устройство — стробоскоп. Стробоскоп позволяет разглядывать быстродвижущиеся предметы. В осциллографе тоже самое, он по сути представляет собой «электронный» стробоскоп! Только с помощью изменения частоты развертки мы добиваемся замирания картинки на экране прибора. И если частота развертки будет близка или совпадать с частотой сигнала, то на экране ты увидишь статичную картинку, которая словно нарисована на бумаге.
А иначе будет казаться, что синусоида куда-то бежит. Я не буду рассказывать как это достигается. Главное понять принцип, а детали конкретной реализации уже не столь важны. Все остальные функции осциллографа уже являются дополнением. Их наличие сильно упрощает исследование сигналов. И если каких-то из них нет в твоём приборе, то можно жить спокойно.
Какие бывают осциллографы
Пока что ещё можно выделить три основных вида осциллографов: аналоговые, цифровые и аналогово-цифровые. Цифровых с 80х годов 20 века становится всё больше. Сейчас они представляют самую многочисленную группу. Обладают множеством полезных дополнитель
mp16.ru
Осциллограф — это… Что такое Осциллограф?
ОсциллографОсцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи; измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.
Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.
Применение
Используются в прикладных, лабораторных и научно-исследовательских целях, для контроля/изучения электрических сигналов — как непосредственно, так и получаемых при воздействии различных устройств/сред на датчики, преобразующие эти воздействия в электрический сигнал.
Курсорные измерения
Захват строки телевизионного сигнала
Для периодического и оперативного контроля качественных показателей телевизионного тракта и отдельных его звеньев в системах телевещания применяются специальные осциллографы с блоком выделения строк.
Классификация
По назначению и способу вывода измерительной информации:
- Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)
- Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph
По способу обработки входного сигнала
- Аналоговый
- Цифровой
По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).
Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.
Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).
Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).
Устройство
Осциллограф с дисплеем на базе ЭЛТ состоит из электронно-лучевой трубки, блока горизонтальной развертки и входного усилителя (для усиления слабых входных сигналов). Также содержатся вспомогательные блоки: блок управления яркости, блок вертикальной развертки, калибратор длительности, калибратор амплитуды.
Современные осциллографы всё в большей степени переходят (как и вся техника визуализации — телевизоры, мониторы и тп.) на отображение информации на экране ЖК-дисплеев.
Экран
Схема электронно-лучевой трубки осциллографа: 1 — отклоняющие пластины, 2 — электронная пушка, 3 — пучок электронов, 4 — фокусирующие катушки, 5 — экранОсциллограф имеет экран A, на котором отображаются графики входных сигналов (у цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки, у аналоговых осциллографов в качестве экрана используется электронно-лучевая трубка с электростатическим отклонением). На экран обычно нанесена разметка в виде координатной сетки.
Сигнальные входы
Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т. д. каналов на входе). Многоканальные осциллографы позволяют одновременно сравнивать сигналы между собой (формы, амплитуды, частоты и пр.)
Управление разверткой
Имеются значительные отличия в аналоговых и цифровых осциллографах. В цифровых осциллографах, строго говоря, не требуется синхронизация, так как при частоте обновления 1 сек и менее изображение на экране вполне читаемо визуально.
Режимы развертки:
- автоматический;
- ждущий;
- автоколебательный;
- однократный;
Триггер
Если запуск развёртки никак не связан с наблюдаемым сигналом, то изображение на экране будет выглядеть «бегущим» или даже совершенно размазанным. Это происходит потому, что в этом случае осциллограф отображает различные участки наблюдаемого сигнала на одном и том же месте. Для получения стабильного изображения все осциллографы содержат систему, называемую триггер.
Триггер в осциллографе — это устройство, которое задерживает запуск развёртки до тех пор, пока не будут выполнены некоторые условия. Триггер имеет как минимум две настройки:
- Уровень сигнала: задаёт входное напряжение (в вольтах), при достижении которого запускается развёртка
- Тип запуска: по фронту или по спаду
Таким образом, триггер запускает развёртку всегда с одного и того же места сигнала, поэтому изображение сигнала на осциллограмме выглядит стабильным и неподвижным (конечно, только при правильных настройках триггера).
Настройка
Для работы с осциллографом предварительно необходимо произвести калибровку его канала (каналов). Калибровка производится после прогрева прибора (примерно минут 5). Калибратор встроен в большинство осциллографов. Для калибровки высокочастотных моделей желательно иметь шнур с двумя разъемами (на выход калибратора и на вход осциллографа) иначе возможны искажения сигнала. Для низкочастотных моделей возможно просто коснуться щупом выхода калибратора. Далее ручку вольт/дел. ставится так, чтобы сигнал калибратора занимал 2—4 деления на экране (то есть, если калибратор 1 вольт,- то на 250 милливольт). После этого канал включается на переменное напряжение и на экране появится сигнал. Далее, в зависимости от частоты калибратора, ручка развертки ставится в положение при котором видно не менее 5—7 периодов сигнала. Для частоты 1 килогерц частота развертки при которой каждый период занимает одно деление экрана равен 1 мс (одна миллисекунда). Далее необходимо убедиться, чтобы сигнал на протяжении этих 5-7 периодов попадал точно по делениям экрана. Для аналоговых осциллографов нормируется как правило ±4 деления от центра экрана, то есть на протяжении восьми делений должен совпадать точно. Если не совпадает, следует поворачивать ручку плавного изменения развертки добиваясь совпадения. Заодно проверяется амплитуда (размах) сигнала — она должна совпадать с тем, что написано на калибраторе. Если не совпадает, то необходимо добиться совпадения, поворачивая ручку плавного изменения чувствительности вольт/дел. Необходимо помнить, что если установлена чувствительность канала в 250 милливольт, то сигнал в 1 вольт занимает при правильной настройке 4 деления. После калибровки прибор будет показывать сигнал точно. Теперь можно не только смотреть, но и измерять сигналы.
История
Первый осциллограф был изобретён французским физиком Андре Блонделем в 1893 году.
Интересные факты
См. также
Примечания
Ссылки
Литература
- Р. Г. Карпов, Н. Р. Карпов Электрорадио измерения М.: «Высшая школа», 1978
dic.academic.ru
Осциллографы.Виды и особенности.Устройство и работа.Применение
Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.
Устройство и принцип действия
Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.
На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.
Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.
Обычно в комплекте с осциллографом есть делители, в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.
С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель, раздваивается и приходит на переключатель синхронизации и линию задержки, которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.
Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.
Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.
Переключатель синхронизации работает в положениях синхронизации от:
- Исследуемого сигнала.
- Сети.
- Внешнего источника.
Первое положение применяется чаще, так как оно более удобно.
Классификация
Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.
Аналоговые осциллографы
Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.
Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.
Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.
Цифровые запоминающие
Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.
Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.
Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.
Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.
Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.
Цифровые люминофорные
Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.
Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.
В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.
Цифровые стробоскопические
В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.
Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.
Виртуальные осциллографы
Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.
Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.
Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.
Портативные осциллографы
Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.
При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.
Похожие темы:
electrosam.ru
Люди. Годы. Осциллографы | Техника и Программы
Так что же это за класс приборов – осциллографы, – насчитывающий вековую историю? А может быть, и многовековую? Ведь Зевс, когда проектировал первую молнию и испытывал ее, должен был иметь осциллограф. Увы, мифы Древней Греции молчат, Гомер унес свои тайны в пещеры Аида.
Поэтому мы попытаемся приотрыть тайну возникновения осциллографа и проследить ее судьбу, прошлое, настоящее и будущее этого направления на примере одного из мировых лидеров второй половины XX в. – Вильнюсского НИИ радиоизмерительных приборов (далее – ВНИИРИП).
Афина Паллада, покровительница наук, научила людей думать, а Прометей, покровитель ремесел, научил людей делать топоры и… приборы. Так появились осциллографы.
Вкратце история развития осциллографии выглядит следующим образом [1, 2].
В 1885 году российский физик А.Р.Колли создал осциллометр –
прототип шлейфовых осциллографов.
В 1893 году французский физик Андре Блондель (Andre Blondel)
изобрел электромеханический осциллограф.
В 1897 году немецкий ученый Карл Фердинанд Браун (Karl Ferdi- nand Braun) создал первый катодно-лучевой осциллограф для индикации электромагнитной волны.
В 1907 году российский ученый, профессор Б.Л.Розинг (18361933) предложил телевизионную систему с электронно-лучевой трубкой (ЭЛТ) с видимым изображением, на экране которой он увидел форму электрического разряда молнии. Эта система и стала прообразом электронного осциллографа.
В 1931 году американская компания General Radio впервые продемонстрировала осциллограф, который уже можно было использовать вне помещений лаборатории.
Первый двухлучевой осциллограф был разработан в конце 1930-х годов английской компанией Cossor, в дальнейшем Raytheon.
Фосфорное послесвечение в ЭЛТ было введено компанией Du Mont Labs, США.
Во время Второй мировой войны осциллографы использовались при разработке радаров, а самой известной являлась модель осциллографа 248 фирмы Du Mont Labs.
Наибольшее развитие осциллографы получили после окончания Второй мировой войны. Вычислительная техника, расщепление атома и радиолокация стали основными двигателями в развитии осциллографии. Эта техника стала развиваться во всех частях света, и в первую очередь – в Европе и Америке. К концу 1940-х годов мировым лидером в осциллографии стала компания Tektronix, вскоре к ней присоединилась компания Hewlett-Packard, и уже в 1950-х годах практически во всех технически развитых странах стали производить эти приборы. Не отстали и Нижегородская лаборатория Бонч-Бруевича, московские и вильнюсские предприятия.
В 1946 году Говард Воллюм (Howard Vollum) и Мелвин Джек Мёрдок (Melvin Jack Murdock), основатели фирмы Tektronix, изобрели так называеымй осциллограф со ждущей разверткой, что и было использовано в модели 511, имевшей полосу пропускания 10 МГц [3]. Это окончательно превратило осциллограф в универсальный измерительный прибор.
Первый промышленный стробоскопический осциллограф 185A был выпущенн фирмой Hewlett-Packard в 1960 году и имел полосу пропускания 500 МГц [4].
В 1963 году фирма Tektronix впервые выпустила на рынок осциллограф на бистабильной запоминающей ЭЛТ, позволивший регистрировать однократные сигналы.
Первый цифровой осциллограф был разработан под руководством Уолтера ЛеКроя (Walter LeCroy), основателя фирмы LeCroy, для исследовательского центра CERN в конце 1970-x годов. Начиная с 1980-х годов цифровые осциллографы заняли лидирующие позиции на рынке.
Первый советский промышленный электронный осциллограф был разработан на заводе 555 в Вильнюсе Сергеем Николаевичем Макеевым в 1948 году и серийно выпускался Рыбинским приборостроительным заводом. В 1957 году его наименование было изменено с ЭО-7 на С1-1. Полоса пропускания осциллографа составляла 250 кГц (по другим данным – 300 кГц).
А что же в Вильнюсе?
В 1925 году предприимчивые польские инженеры, Самуэль Хволес (Samuel Chvoles) и Хирш Хволес (Hirsh Chvoles), а также Нахман Левин (Nachman Levin) создали в Вильно (Вильнюс) радиотехническое товарищество Elektrit. Первоначально существовал магазин на ул. Виленска, 24 (в настоящее время ул. Вильняус), который импортировал и продавал радиодетали и радиоприемники [5].
Владельцы предприятия бысто осознали, что куда выгоднее самим производить радиоприемники и их комплектующие. В 1927 году компания получает официальное разрешение на строительство завода и с тех пор уже известна как производитель радиоприемников. В том же году, радиоприемник завода Elektrit награжден золотыми медалями на выставках в Париже и Флоренции.
C 1934-го по 1936 год на ул. Шептицкого было закончено строительство новых производственных мощностей. Довоенные карты Вильно подтверждают, что в 1930-х годах ул. Шептицкого (ul. Generała Szeptyckiego), 16а – это сегодня ул. Шевченкос, 16а.
Эмблема радиотехнического товарищества Elektrit в 1930-х годах
После завершения строительства завод занимал 10 300 кв.м. площадей, имел собственную электростанцию, большую столярную мастерскую, механический цех, сборочный цех, лаборатории, склады и актовый зал. Работал сборочный конвейер с шестью производственными линиями. Всего завод выпустил 54 тысячи радиоприемников на общую сумму, эквивалентную 1,2 млн. долларов США. На заводе были заняты 1100 работников, в том числе большое количество инженеров и техников, что делало завод одним из крупнейших работодателей в Вильно. На заводе действовала профсоюзная организация.
Кроме того, компания выпускала собственные динамики, конденсаторы, катушки индуктивности, трансформаторы, а также корпуса приемников. Корпуса радиоприемников были изготовлены очень тщательно и со вкусом. Их характерной чертой была отделка под орех. Наряду с внешней элегантностью, они имели хорошую акустику. Доля собственных компонентов в производстве выросла до 80%.
Карта Вильнюса 1935 г.
В центре хорошо видна ул. генерала Шептицкого, где был построен завод Elektrit. Стрелкой показано местоположение завода
С 1937 года радиоприемники завода стали экспортировать в Индию, Бразилию, Латвию, СССР, Турцию, Грецию и Южную Африку.
Elektrit был единственным экспортером электротехники на польском рынке, а выпускаемые этим заводом радиоприемники по тем временам были мирового класса…
Таким образом, на нашей “площадке” еще до Второй мировой войны работало одно из крупнейших предприятий Вильнюса, к тому же, как сегодня принято говорить, высокотехнологического направления.
Радиоприемник “Allegro” завода Elektrit образца 1938 г.
С началом Второй мировой войны в 1939 году, непосредственно перед передачей Вильно Литовскому государству, в Вильнюс были введены части Красной Армии. Предприятие было национализировано. Оборудование было демонтировано и перевезено в СССР, в Минск, где было построено новое предприятие под названием “Радиозавод имени Молотова”, в 1958 году переименнованный в Минский приборостроительный завод им. В.И.Ленина (далее – Минский завод).
Однако смонтировать и запустить его смогли только осенью 1940 года, когда часть рабочих и специалистов переехала из Вильнюса в Минск и где каждому обещали дать советское гражданство и жилье (по другим данным их депортировали).
Завод начал выпускать радиоприемники «КИМ» – копию вильнюсского “Regent”, а также “Пионер” – модифицированную версию вильнюсского “Herold”. Более известный “Маршалл” также являлся копией радиоприемника “Komandor”.
В 1941-1944 годах в оставшихся помещениях завода Elektrit
Вермахт Германии ремонтировал свою радиоаппаратуру.
После освобождения Вильнюса летом 1944 года производство было возрождено. С 13 октября 1944 года предприятие получило название «Союзный Государственный завод 555». Это было уже предприятие Министерства авиационной промышленности (МАП) СССР с совершенно другими приоритетами.
Принципиальная схема радиоприемника “Allegro” завода Elektrit
А.Ф. Денисов, Я.М. Россоский, Люди. Годы. Осциллографы, Вильнюс 2012
nauchebe.net