Индуктивный датчик — принцип работы, устройство, фото и видео обзор
Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.
Бесконтактные индуктивные датчикиПо сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.
Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.
Достоинства и недостатки
Начнем с достоинств:
- Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
- Можно использовать для подключения в электрические сети с промышленной частотой.
- Высокая чувствительность.
- Может выдерживать большую выходную мощность.
Недостатки:
- Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.
Параметры индуктивного датчика
Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.
МаркировкаНа практике же за основу выбора берут два показателя диапазона срабатывания:
- Эффективный.
- Полезный.
Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.
Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.
Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.
Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.
Перечислим и другие не столь важные параметры6
- Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.
Индуктивные прямоугольные датчики серии RNВнимание! Производители сегодня предлагают так называемые универсальные индукционные датчики, которые могут работать и от сети переменного тока, и от сети постоянного.
- Ток нагрузки (номинальный) – 200 мА. Сегодня производители иногда производят датчики с токовой нагрузкой 500 мА. Это так называемое специсполнение.
- Частота отклика. Суть этого параметра заключается в том, что он показывает максимальное значение возможности переключаться. Измеряется данный параметр в герцах. Так для основных промышленных датчиков этот показатель равен 1000 Гц.
Способ подключения
Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.
- Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
- Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
- Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.
Цветовая маркировка выводов
Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:
- Минус – синий цвет.
- Плюс – красный.
- Выход – черный.
- Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.
И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.
Индуктивные датчики. Виды. Устройство. Параметры и применение
Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.
Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.
Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.
Виды и устройство
Индуктивные датчики разделяются по схеме построения на 2 вида:
- Одинарные датчики.
- Дифференциальные датчики .
Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.
В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.
Индуктивность катушки вычисляется по формуле: L = WΦ/I
Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W
Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.
Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.
Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:
L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.
Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.
Окончательно получается выражение:
На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:
Из недостатков одинарных можно отметить:
- При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
- Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
- Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.
Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).
Дифференциальные датчики классифицируются по форме сердечника:
- Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
- Цилиндрические индуктивные датчики с круглым магнитопроводом.
Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.
Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.
При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.
При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.
Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.
Параметры
- Одним из параметров индуктивных датчиков является диапазон срабатывания. По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.
На практике при подборе датчика важны два показателя интервала срабатывания:
- Полезный.
- Эффективный.
Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.
- Другим параметром является гарантированный предел срабатывания. Он колеблется от нуля до 81% от номинала.
- Также следует учитывать параметры: повторяемость и гистерезис, который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
- Нагрузочный ток. Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
- Частота отклика. Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.
Методы подключения на схемах
Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.
- Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
- Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
- Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.
Цветовая маркировка
Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:
- Минус – синий.
- Плюс – красный.
- Выход – черный цвет.
- Второй проводник выхода – белый цвет.
Погрешности
Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком. Суммарная погрешность состоит из множества различных погрешностей. Рассмотрим основные виды погрешностей датчиков.
- Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
- Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
- Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
- Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.
- Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних полей.
- Тензометрическая погрешность случайная величина и зависит от качества намотки витков провода. При намотке возникают механические напряжения, изменение которых при функционировании датчика приводит к изменению сопротивления обмотки постоянному току, а значит, изменению сигнала на выходе. Чаще всего в качественных датчиках эту погрешность не учитывают.
- Погрешность старения датчика появляется от износа движущихся частей устройства датчика, а также постоянного изменения электромагнитных свойств магнитопровода. Такую погрешность считают также случайным значением. При определении погрешности износа учитывается кинематика устройства датчика. При проектировании датчика рекомендуется определять его срок эксплуатации в нормальном режиме, за период которого погрешность от износа не превзойдет заданного значения.
- Погрешность технологии появляется при отклонениях от техпроцесса изготовления датчика, разброса параметров катушек и элементов при сборке, от влияния натягов и зазоров при сопряжении деталей. Оценка погрешности технологии производится простыми механическими измерителями.
Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.
Достоинства
- Большая чувствительность.
- Повышенная мощность выхода, до нескольких десятков Вт.
- Возможность подключения к промышленным источникам частоты.
- Прочное и простое устройство.
- Нет трущихся контактов.
Недостатки
- Способны функционировать только на переменном напряжении.
- Стабильность питания и частота влияют на точность работы датчика.
Сфера использования
- Медицинские аппараты.
- Бытовая техника.
- Автомобильная промышленность.
- Робототехническое оборудование.
- Промышленная техника регулирования и измерения.
Похожие темы:
electrosam.ru
Индуктивный датчик. Принцип работы и подключение
Индуктивный датчик (inductive sensor) – это датчик бесконтактного типа, предназначенный для контроля положения объектов из металла.
Принцип работы
Работа индуктивного датчика основана на взаимодействии магнитного поля катушки, расположенной внутри датчика, и металла, из которого состоит объект.
При приближении металлического объекта (5) к катушке (3), магнитное поле (4) изменяется, что в свою очередь заставляет компаратор (2) сформировать сигнал, который впоследствии поступит на усилитель (1) и далее в цепь управления.
Параметры
Напряжение питания – диапазон напряжения, при котором датчик работает корректно.
Максимальный ток переключения
— количество непрерывного тока, которое пропускаясь через датчик, не вызывает повреждение датчика.Минимальный ток переключения — минимальное значение тока, которое должно протекать через датчик, чтобы гарантировать работу.
Рабочее расстояние (Sn) – максимальное расстояние от поверхности датчика, до квадратного куска железа толщиной 1 мм в осевом направлении. Расстояние будет уменьшаться для других материалов, зависимость Sn от материала представлена в таблице.
Железо |
1 x Sn |
Нержавеющая сталь |
0,9 х Sn |
Латунь — бронза |
0,5 x Sn |
Алюминий |
0,4 x Sn |
Медь |
0,4 x Sn |
Частота переключения — максимальное количество переключений датчика в секунду.
Способ подключения
Способ подключения зависит от типа индуктивного датчика.
Трехпроводные – два вывода отвечают за питание датчика, а третий подключается к нагрузке. В зависимости от структуры (NPN или PNP) нагрузка подключается к положительному (NPN) или отрицательному (PNP) полюсу источника постоянного напряжения.
Четырехпроводные – два вывода питания, два вывода подключаются к нагрузке.
Существуют также двух и пятипроводные датчики, но используются они реже из-за особенностей подключения.
Индуктивный датчик LJ12A3-4-Z/BX
Рассмотрим стандартный датчик, который наиболее часто используется в ЧПУ-станках или 3d-принтерах в качестве концевого выключателя. Датчик имеет 3 вывода и NPN структуру. Размеры датчика 12×50мм, расстояние обнаружения 4мм. Напряжение питания 6-36 В.
На реальном примере продемонстрируем работу датчика. В качестве нагрузки подключаем светодиод с токоограничивающим резистором, а затем подносим металлическую пластину к датчику.
На расстоянии менее 4 мм от пластины, датчик срабатывает и подает напряжение на нагрузку через нормально разомкнутый контакт (NO).
electroandi.ru
УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах – сигнализациях отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях… Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.
Схема принципиальная датчика
Для более чёткого рассмотрения картинки — сохраните её на ПК и увеличьте.
Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.
Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.
Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.
Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу…
Изготовление индуктивного датчика
Файл и чертёж проекта можно скачать по ссылке. Катушки L1 и L2 без сердечников. L2 содержит 30 витков провода ПЭВ-1 (0.1-0.12 мм). L1 20-30 витков провода ПЭВ-1 (0.1-0.12 мм.) в зависимости от щели-расстояния в датчике (подбирается опытным путём, но при щели около 2 мм. 23-26 витков). Мотаются катушки на оправке (маленькое 1-1.5 мм. сверло, или иголка, кусок проволоки) между двумя картонными щёчками, после закрепляются клеем и снимаются с оправки, щёчки отбрасываются тоже. Толщина катушек два — три диаметра провода, мотаются в навал. Обе готовые катушки надеваются на пластиковый стержень, который после можно вынуть, между катушек ставится полиэтиленовая или фторопластовая прокладка подходящей толщины (полиэтилен и фторопласт отстаёт от застывшей эпоксидной смолы).
Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.
В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.
Фотографий готового устройства нет, так как мопед продал, а прибор был в нём. Так же как и плата самого зажигания, к которому и подсоединён этот датчик. Теперь возможно только побробнейшее описание и ответы на вопросы интересующихся на форуме. Но зажигание вместе с этим датчиком действительно было на порядок лучше промышленного. Искрами в лабораторном испытании даже киповскую бумагу поджигало. Ребята шутили — зачем тебе теперь бензин? На макулатуре будешь ездить… В общем схема отличная, рекомендую! Автор статьи — ПНП.
Форум
Обсудить статью УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
radioskot.ru
Индуктивные датчики электромагнитного поля в схемах на МК
Переменные и пульсирующие электромагнитные поля создаются трансформаторами, дросселями, электродвигателями, реле переменного тока и т.д. Для их обнаружения, индикации и усреднённой оценки применяются различные приборы, втом числе содержащие индуктивные датчики.
Принцип работы датчиков электромагнитного поля заключается в регистрации электродвижущей силы (ЭДС), возникающей в катушке индуктивности при приближении к ней магнита или внесении её в магнитное поле. Физические явления здесь строго подчиняются закону электромагнитной индукции Фарадея.
Области применения индуктивных датчиков электромагнитного поля — искатели скрытой проводки, индикаторы короткозамкнутых витков, измерители магнитных полей вокруг трансформаторов и дисплеев, научные эксперименты (Рис. 3.63, а…м).
Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК {начало):
а) /4/ — это датчик низкочастотного магнитного поля промышленной сети 50 Гц. Состоит он из катушки головного телефона, но без амбушюры и металлической мембраны;
б) /4/ — это датчик магнитного поля ультразвуковой частоты для исследования работы строчных трансформаторов телевизоров (15.625 кГц) или VGA-мониторов (31.25 кГц). Катушка датчика содержит 50 витков провода ПЭВ-0.23…0.31, намотанных на ферритовом стержне 200 х 10 мм. Конденсатор С/ подбирается до получения резонанса с индуктивностью катушки /4 7;
в)/4/ — это датчик магнитной составляюшей радиочастотного поля, возникаюшего, например, вблизи радиопередатчиков. Используется ферритовая антенна от обычного ДВ-, СВ- или КВ-радиоприёмника в зависимости от поставленной задачи;
г) в индуктивных датчиках могут возникать всплески напряжения, поэтому требуется защита входа МК, в частности, буферными элементами VD1, VT1\
д) индуктивный датчик перемещения. По мере введения металлического стержня в катушку трансформатора TI будет увеличиваться переменный сигнал 50 Гц во вторичной обмотке;
Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК
{продолжение)’.
е) регистратор электромагнитных излучений от компьютерных дисплеев/кинескопов (I, = 10 мГн), флуоресцентных ламп (L, = 35 мГн), микроволновых печей (L, = 120 мГн). Катушка L/содержит 1200 витков провода ПЭВ-0.315, намотанных на металлическом болте 6×25 мм;
ж) МК подсчитывает число приближений внешнего магнита к катушке индуктивности датчика >4/(показано пунктиром). Резисторы /?желательно применить высокоточные;
з) подключение двухкатушечного гитарного звукоснимателя ЛI через усилитель-компрессор на специализированной микросхеме DAI фирмы Analog Devices. Схема универсальная и может применяться для компадирования сигналов не только в электрогитарах;
и) сигналы от датчика L1 проходят через активный ФНЧ DAL2 с частотой среза 3…4 кГц. Усиление задаётся резистором R5. Элемент Ж/. / формирует среднее напряжение +2.5 В;
Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК
{окончание):
к)Л1 — это интегральный индуктивный датчик (фирма Speake & Со Llanfapley), изменяющий частоту выходного сигнала OUT под воздействием магнитного поля. Микросхема DA! служит преобразователем «частота — напряжение» на основе ФАПЧ (калибруется резистором R6)\ л) индуктивный датчик LI устанавливается вблизи двигателя или возле проводов, подводящих к нему питание. Чувствительности достаточно для регистрации тока 100 мА, при этом пиковое напряжение отдатчика составляет 10 мВ. Низкое энергопотребление устройства позволяет использовать для питания МК малогабаритную «трёхвольтовую» литиевую батарею;
м) «сенсорная» катущка L1 принимает импульсы, возникающие при образовании искры в свечах двигателя автомобиля. Для симметрии схемы выбирают равными R1 и R2, R4w R6.
nauchebe.net
Индукционные датчики
Индукционные датчики
Индукционные датчики предназначены для преобразования скорости линейных и угловых перемещений в ЭДС. Они относятся к датчикам генераторного типа. Принцип действия индукционных датчиков основан на законе электромагнитной индукции. Выходным сигналом индукционных датчиков является ЭДС, которая пропорциональна скорости изменения магнитного потока, пронизывающего витки катушки. Это изменение происходит за счет перемещения катушки в постоянном магнитном поле или за счет вращения ферромагнитного индуктора относительно неподвижной катушки.
Основным отличием индукционных датчиков от индуктивных является то, что в них используется постоянное магнитное поле, а не переменное (питание индуктивных датчиков осуществляется от сети переменного тока). Постоянное магнитное поле в индукционных датчиках создается двумя способами: постоянными магнитами или катушкой, обтекаемой постоянным током.
На рис. 6.19, а показана схема датчика с обмоткой W2, размещенной в воздушном зазоре, в котором постоянный магнитный поток Ф создается катушкой W1, включенной на постоянное напряжение. При перемещении катушки в магнитном поле в ней индуцируется ЭДС, пропорциональная скорости перемещения:
гдеk — коэффициент пропорциональности, зависящий от числа витков W2 и конструктивных параметров датчика.
На рис. 6.19, б показан датчик, в котором постоянный магнитный поток создается с помощью постоянного магнита с полюсными наконечниками. ЭДС, индуцируемая во вращающейся катушке, пропорциональна скорости вращения Ω:
В обоих этих датчиках катушки подвижны, поэтому для отвода от них выходного сигнала (ЭДС) необходимы гибкие токоподводы или контактные кольца со щетками.
Индукционный датчик может быть выполнен и другой конструкции: с неподвижной катушкой и вращающимся постоянным магнитом (рис. 6.19, в). Надежность при этом повышается за счет отсутствия скользящего контакта. Возможен и другой способ повышения надежности датчика по схеме рис. 6.19, б: и катушка, и постоянный магнит неподвижны, а в зазоре между ними вращается ферромагнитное кольцо с вырезами (рис. 6.19, г) или иной элемент, имеющий существенно разную магнитную проводимость по взаимно перпендикулярным осям. При вращении изменяется поток, пронизывающий плоскость катушки.
В датчиках (рис. 6.19, б, в, г) в качестве выходного сигнала можно использовать частоту ЭДС. Принцип их действия по существу такой же, как у синхронных генераторов. Для измерения частоты вращения используются и специальные электрические машины малой мощности — тахогенераторы.
Тахогенератор постоянного тока имеет обмотку возбуждения, создающую при питании постоянным током магнитный поток Ф. При вращении якоря в нем создается ЭДС, пропорциональная частоте вращения п: Е= кФп, где k — постоянная, определяемая конструкцией.
Частота вращения п обычно выражается в 1/мин (количество оборотов в минуту) и связана со скоростью вращения выражением:
С помощью коллектора и щеток выходной сигнал подается на нагрузку в виде выпрямленного напряжения.
Тахогенератор переменного тока имеет на статоре две обмотки, сдвинутые одна относительно другой на 90 град. Одна обмотка включается в сеть переменного тока. При вращении ротора, выполненного в виде тонкостенного электропроводящего цилиндра, в другой обмотке наводится переменная ЭДС, которая пропорциональна частоте вращения п. Для повышения температурной стабильности в качестве материала полого ротора используется константан.
Тахогенераторы обладают высокой чувствительностью и мощностью выходного сигнала. Общим недостатком всех генераторных датчиков является зависимость выходного сигнала от сопротивления нагрузки.
studfiles.net
Бесконтактные датчики | Практическая электроника
В настоящее время бесконтактные датчики используются в современной промышленной электронике. Принцип их работы очень важен, так как почти вся промышленная электроника от самого простого станка до ЧПУ станка имеет в своем составе хотя бы один датчик.
Думаю, вы знаете, что такое геркон . Да, этот радиоэлемент до сих пор используется в радиоэлектронике, а также в электротехнике. Но чем же он так хорош? Его контакты замыкаются, если его «облучить» магнитным полем. Это значит, что с помощью простого магнитика или электромагнита (принцип электромагнетизма мы рассматривали в статье Принцип работы реле ) можно запросто управлять замыканием и размыканием контактов геркона. По сути дела, геркон является первым бесконтактным датчиком.
Бесконтактный датчик — это такой датчик, к которому не надо прикасаться механически или как-нибудь еще. Бесконтактные датчики работают через электрическое и магнитное поле, а также широко используются и оптические датчики. В этой статье мы с вами разберем все три типа датчиков: оптические, емкостные и индуктивные, а также в конце проделаем опыт с индуктивным датчиком. Кстати, в народе бесконтактные датчики называют также и бесконтактными выключателями, так что не бойтесь, если увидите такое название ;-).
Итак, пару слов об оптических датчиках… Принцип срабатывания оптических датчиков показан на рисунке ниже
Помните какие-нибудь кадры из фильмов, где главным героям приходилось пройти через оптические лучи и не задеть ни один из них? Если луч задевался какой-либо частью тела, срабатывала сигнализация.
Луч излучается посредством какого-либо источника. А также есть «лучеприемник», то есть та штучка, которая принимает луч. Как только луча не будет на лучепримнике, то сразу же в нем включится или выключится контакт, который будет уже непосредственно управлять сигнализацией или еще чем-нибудь по вашему усмотрению. В основном источник луча и лучеприемник, называется лучеприемник правильно «фотоприемник», идут в паре.
Очень большой популярностью в России пользуются оптические датчики перемещений фирмы СКБ ИС
В этих типах датчиков есть и источник света и фотоприемник. Они находятся прямо в корпусе этих датчиков. Каждый тип датчиков представляет из себя законченную конструкцию и используется в ряде станков, где нужна повышенная точность обработки, вплоть до 1 микрометра. В основном это станки с системой Числового Программного Управления (ЧПУ), которые работают по программе и требуют минимального вмешательства человека в работе таких станков. Эти типы датчиков построены по этому принципу:
Такие типы датчиков обозначаются буквой «T» и называются барьерными. Как только оптический луч прервался, датчик сработал. Плюсы барьерных датчиков:
— дальность действия может достигать до 150 метров
— высокая надежность и помехозащищенность
Минусы: при больших расстояниях срабатывания требуется точная настройка фотоприемника на оптический луч.
Рефлекторный тип датчиков обозначается буквой R . В этих типах датчиков излучатель и приемник расположены в одном корпусе.
Принцип действия можно увидеть на рисунке ниже
Свет от излучателя отражается от какого-либо светоотражателя (рефлектора) и попадает в приемник. Как только луч прерывается каким-либо объектом, то датчик срабатывает. Очень удобен этот датчик на конвейерных линиях при подсчете продукции.
И последний тип оптических датчиков — диффуззионные — обозначаются буквой D. Выглядеть могут по разному:
Принцип работы такой же, как и у рефлекторного, но здесь свет уже отражается от предметов. Такие датчики рассчитаны на маленькое расстояние срабатывания и неприхотливы в своей работе.
Оптика оптикой, но самые неприхотливые в своей работе и очень надежные считаются индуктивные и емкостные датчики. Примерно вот так они выглядят
Они очень похожи друг на друга. Принцип их работы связан с изменением магнитного и электрического поля. Индуктивные датчики срабатывают при поднесении к ним какого-либо металла. На другие материалы они не «клюют». Емкостные же срабатывают почти на любые вещества.
Как говорится, лучше один раз увидеть, чем сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.
Итак, у нас в гостях индуктивный датчик российского производства
Читаем, что на нем написано
Марка датчика ВБИ бла бла бла бла, S — расстояние срабатывания, здесь оно составляет 2 мм, У1 — исполнение для умеренного климата, IP — 67 — уровень защиты (короче уровень защиты здесь очень крутой), Ub — напряжение, при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр — ток нагрузки, этот датчик может выдать в нагрузку силу тока до 200 милиАмпер, думаю, это прилично.
На развороте бирки схема подключения этого датчика.
Ну что, заценим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет светодиод, соединенный последовательно с резистором с номиналом в 1 килоОм. Зачем нам резистор? Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.
На коричневый провод датчика подаем плюс от Блок питания, а на синий — минус. Напряжение я взял 15 Вольт.
Наступает момент истины… Подносим к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиодик.
На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).
Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.
В мире электроники эти три типа датчиков находят все более широкое применение. С каждым годом производство этих датчиков растет и растет. Они используются абсолютно в разных областях промышленности. Автоматизация и роботизация без этих датчиков была бы невозможна. В этой статье я разобрал только простейшие датчики, которые выдают нам только сигнал «включен-выключен» или, если сказать на профессиональном языке, один бит и нформации. Более навороченные типы датчиков могут выдавать различные параметры и даже могут соединяться с компьютерами и другими микроконтроллерными устройствами напрямую.
В нашем радиомагазине индуктивные датчики стоят в 5 раз дороже, чем если бы их заказывать с Китая с Алиэкспресса.
Вот здесь можете глянуть разнообразие индуктивных датчиков.
www.ruselectronic.com