Как пользоваться мегаомметром: измерение, подключение, видео
Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.
Устройство и принцип действия
Содержание статьи
Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:
- Источника постоянного напряжения.
- Измерителя тока.
- Цифрового экрана или шкалы измерения.
- Щупов, посредством которых напряжение от прибора передается на измеряемый объект.
Так выглядит стрелочный мегаомметр (слева) и электронный (справа)
В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.
Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.
Примерная схема магаомметра
Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.
Работа с мегаомметром
При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.
Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.
Один из вариантов современных мегаомметров
Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.
Требования по обеспечению безопасных условий работы
Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:
- Держать щупы только за изолированную и ограниченную упорами часть.
- Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).
Как пользоваться мегаомметром: правила электробезопасности
- Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
- После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
- После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
- Работать в перчатках.
Правила не очень сложные, но от их выполнения зависит ваша безопасность.
Как подключать щупы
На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:
- Э — экран;
- Л- линия;
- З — земля;
Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.
Щупы для мегаомметра
На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).
Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:
- К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
- К жиле и «земле», если проверяем «пробой на землю».
Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой
Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.
Процесс измерения
Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.
Наименование элемента | Напряжение мегаомметра | Минимально допустимое сопротивление изоляции | Примечания |
---|---|---|---|
Электроизделия и аппараты с напряжением до 50 В | 100 В | Должно соответствовать паспортным, но не менее 0,5 МОм | Во время измерений полупроводниковые приборы должны быть зашунтированы |
тоже, но напряжением от 50 В до 100 В | 250 В | ||
тоже, но напряжением от 100 В до 380 В | 500-1000 В | ||
свыше 380 В, но не больше 1000 В | 1000-2500 В | ||
Распределительные устройства, щиты, токопроводы | 1000-2500 В | Не менее 1 МОм | Измерять каждую секцию распределительного устройства |
Электропроводка, в том числе осветительная сеть | 1000 В | Не менее 0,5 МОм | В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года |
Стационарные электроплиты | 1000 В | Не менее 1 МОм | Измерение проводят на нагретой отключенной плите не реже 1 раза в год |
Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).
Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.
Как проводить измерения мегаомметром
После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.
Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.
Измерение сопротивления изоляции кабеля
Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.
Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).
Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары
Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.
Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.
Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут
Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.
Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.
Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.
Проверить сопротивление изоляции электродвигателя
Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.
Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.
stroychik.ru
Мегаомметр. Виды и устройство. Работа и применение. Особенности
Мегаомметр – специализированный прибор, предназначенный для выполнения замеров сопротивления. В отличие от омметра, данное устройство получило название вследствие особенностей функционального назначения устройства. «Мега» означает тысяча, а это значит, что прибор применяется с целью нахождения сопротивлений высоких значений. Поэтому устройство обеспечивает генерацию напряжений, благодаря которым и осуществляется измерение.
В большинстве случаев мегаомметр необходим для выяснения величин сопротивления в электроизоляции кабелей, электроцепей, трансформаторных установок, электродвигателей и других электрических установок. Изоляция представляет материал, который препятствует протеканию электротока в ненужном направлении. Необходимость проверки изоляции токопроводящих частей вызвана тем, чтобы не было короткого замыкания, возгорания, а также поражения людей электротоком.
Виды
Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания.
- Аналоговые. Их часто именуют стрелочными устройствами. Главная их особенность в том, что в них встроена индивидуальная динамо-машина, которая запускается с помощью кругового движения рукоятки. Также предусмотрена шкала со стрелкой. Сопротивление измеряется благодаря магнитоэлектрическому действию. Стрелка крепится на оси, на которой также находится рамочная катушка, на которую действует магнитное поле постоянного магнита. Когда ток протекает по катушке, то наблюдается отклонение стрелки на некоторый угол. Величина угла зависит от напряжения и силы тока. Возможность подобного измерения определяется законом электромагнитной индукции.
К преимуществам стрелочного устройства относятся надежность и неприхотливость. В то же время прибор является морально устаревшим, ведь данный агрегат имеет существенные размеры и большую массу.
- Цифровые. Данные измерители наиболее распространены. В них установлен мощный генератор импульсов, который работает с помощью полевых транзисторов. Подобные устройства оснащаются источником питания, они производят преобразование переменного тока в постоянный. В качестве источника тока может использоваться сеть либо аккумулятор. Измерение сопротивления осуществляется с помощью усилителя посредством сравнения падения напряжения в электроцепи с сопротивлением эталона.
Показатели отражаются на экране. В большинстве случаев предусмотрено сохранение результатов в памяти, дабы в дальнейшем была возможность сравнить данные. Электронное устройство имеет малый вес и небольшие габариты, благодаря чему можно выполнять разные электрические измерения. Но, чтобы работать с таким устройством, требуется достаточно высокая квалификация пользователя.
Кроме того, устройства отличаются друг от друга генерируемым напряжением и пределами измерений:
- Рабочее напряжение достигает 500 Вольт и предела в 500 МОм;
- 1000 Вольт и предела в 1000 МОм.
- 2500 Вольт и предела в 2500 МОм.
Также устройства отличаются классом точности. Например, устройство модели М4100, которое пользуется значительной популярностью у профессионалов, функционирует с погрешностью максимум 1%. Модель Ф4101 выделяется погрешностью не выше 2,5%. Данные показатели следует учитывать в особенности там, где нужна большая точность определения сопротивления. Подбирать средство для испытаний и тестирования электросистемы следует с учетом сопротивления и иных показателей.
Устройство
Мегаомметр любого вида имеет следующие элементы:
В стрелочных устройствах напряжение создается динамомашиной, которая заключена в корпус. Динамомашина запускается благодаря пользователю, который крутит ручку устройства с установленной частотой. В большинстве случаев частота вращении должна составлять двум оборотам в секунду. Цифровые устройства питаются от электросети, но в то же время могут работать от батареек или аккумулятора. Функционирует устройство благодаря закону Ома, который определяет силу тока как отношение напряжения к сопротивлению. Устройство мерит электроток, протекающий между двумя включенными объектами, к примеру, жила-земля, 2 жилы и так далее. Измерения осуществляются эталонным напряжением, оно известно наперед. Мегаомметр, учитывая напряжение и ток, легко определяет сопротивление изоляционного слоя, которое измеряет.
В качестве источника постоянного напряжения выступает генератор постоянного тока. Чтобы менять пределы измерения, предусмотрен тумблер-переключатель, который дает возможность коммутировать разные резисторы. Благодаря этому можно менять режим работы и выходное напряжение.
Принцип действия
Каждый материал, который не проводит ток, имеет сопротивление изоляции. Со временем она устаревает, либо повреждается. При этом повреждения могут возникать внезапно, иногда их невозможно увидеть. Однако процесс может привести к выходу из строя применяемого оборудования, могут возникнуть замыкания и пожары. К тому же отсутствие изоляции может повлечь появлению на электрическом оборудовании напряжения, которое будет опасно для жизни человека.
Именно для таких измеренй применяется мегаомметр, он создает на измерительных выводах напряжение необходимой величины, чтобы измерить ток, который проходит по цепи. Изначально для генерации напряжений применялись электромеханические машины. Необходимо было вращать рукоятку, дабы генератор вырабатывал напряжение. Главное достоинство таких устройств в том, что им не нужна сеть либо батарея. Измерительная система здесь аналоговая, применяется стрелка, которая демонстрирует показания на шкале.
Также существуют электронные приборы и микропроцессорные устройства. Последние включают измерители тока и напряжения, жидкокристаллический дисплей, микроконтроллер, клавиатуру, источник питания, импульсный преобразователь напряжения. С клавиатуры задается значение испытательного напряжения, после чего генератор создает импульсы тока. Проводятся измерения, полученное значение применяется для вычисления измеряемого сопротивления. Устройство имеет несколько диапазонов измерений, которые переключаются автоматически с помощью изменения коэффициента передачи.
Активный выпрямитель выполняет преобразование переменного тока в постоянный. Напряжение постоянного тока при измерении сопротивления преобразуется в дискретную форму посредством преобразователя частоты напряжения, после чего оно направляется в микроконтроллер. В микроконтроллере происходит обработка команд, которые идут с клавиатуры. Далее идет управление генератором, автоматическим переключением диапазонов. Микроконтроллер вычисляет и запоминает значения измеряемых сопротивлений.
В большинстве случаев в устройстве применяется двухстрочный жидкокристаллический дисплей. Стандартные сервисные функции экрана включают индикатор разряда батареи и выключателя питания в случае отсутствия манипуляций. Корпус выполняется из прочного диэлектрического пластика, на панели спереди располагается клавиатура и индикатор гнезда, куда подключается измерительные щупы. На торце корпуса находится разъем, предназначенный для подключения адаптера. Питание устройства осуществляется от встроенного аккумулятора. Подзарядка батареи осуществляется от бытовой электрической сети в 220 вольт.
Применение
Мегаомметр находит следующее применение:
- Измерение изоляции электрических приборов, а также установок во время наладки и обслуживания в промышленных и лабораторных условиях.
- Измерение сопротивления разъемов, изоляционных материалов, в том числе обмоток электромашин. В большинстве случаев устройство используется для проверки изоляции.
- Измерение сопротивлений с целью проведения расчетов коэффициентов абсорбции, а также поляризации.
При работе мегаомметр создает напряжение, которое может быть опасным для пользователя. Поэтому следует проявлять осторожность. Для начала нужно обесточить оборудование или кабели, в которых нужно провести измерение сопротивления. В промышленности для работы с устройством допускаются только специалисты, которые имеют группу электробезопасности не меньше третьей. Во время измерения изоляции оборудования, к примеру, электрических двигателей, необходимо отключить их от сети. Затем цепи нужно заземлить. С этой целью к шине заземления подключается многожильный провод с хорошей изоляцией.
Похожие темы:
tehpribory.ru
Измерение сопротивления изоляции мегаомметром — методика
Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.
Принцип действия прибора
Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.
В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.
Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).
Инструкция по эксплуатации
Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.
Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.
Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.
Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.
Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.
Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:
- Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
- Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
- Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
- Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
- Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
- Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
- В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.
По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.
Видеоуроки
Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:
Работа с моделью старого образца
Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:
Как использовать м4100
Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:
Инструкция по эксплуатации цифровой модели
Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:
Применение Е6-32
Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.
Будет интересно прочитать:
samelectrik.ru
прибор для измерения сопротивления изоляции
краткое содержание статьи:
Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.
Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.
Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:
- С1 — геометрическая емкость
- С2- абсорбционная емкость
- R1 – сопротивление изоляции
- R2 – сопротивление, потери в котором вызываются абсорбционными токами
Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.
Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.
Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.
Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.
Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.
Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.
Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).
Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр — это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.
Мегаомметр ЭСО-210
Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.
Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».
Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.
Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.
Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.
В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.
При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.
Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.
Мегаомметр sonel mic-2510
Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.
Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.
Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.
Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.
Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.
Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.
В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.
Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.
Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра
Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.
Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.
Замер сопротивления изоляции электродвигателей мегаомметром
Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.
Замер сопротивления изоляции кабелей мегаомметром
Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать повреждение. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.
Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.
Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.
О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.
Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять !!!. Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.
В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!
pomegerim.ru
Как правильно пользоваться мегаомметром — Всё о электрике в доме
Как пользоваться мегаомметром
- Принцип действия мегаомметра
- Общее устройство мегаомметра
- Опасность повышенного напряжения
- Влияние наведенного напряжения
- Действие остаточного напряжения
- Безопасная эксплуатация мегаомметра
- Как измерить сопротивление изоляции
Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6. «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.
Принцип действия мегаомметра
Работа мегаомметра основана на законе Ома для участка цепи. отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.
В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается специальными зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.
Устройство мегаомметра
Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.
Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» — земля, «Л» — линия и «Э» — экран.
Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».
Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.
Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.
Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Влияние наведенного напряжения
Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.
Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.
Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.
Действие остаточного напряжения
При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.
После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.
Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.
Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.
Безопасная эксплуатация мегаомметра
Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.
С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.
Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.
Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.
Сопротивление изоляции: как правильно измерить
Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.
Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.
Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.
На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.
Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.
При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.
Мегаомметр, что это такое и как им пользоваться?
Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапазон измерения прибора на высоком напряжении, и «Ом» единица сопротивления, то есть то, что измеряет прибор, ведь не зря во многих рабочих журналах проверок средств защиты пишут именно мегаомметр. Слово «метр» означает измеряю.
Прибор используется для определения большого значения сопротивления, отключенных от электропитания, электрических цепей и диэлектриков, применяемых для изоляции кабельной продукции, изолированных проводов, двигателей, трансформаторных и электротехнических устройств, установок телекоммуникаций и прочих электрических машин.
Прибор также осуществляет измерительные действия по определению поверхностных и объемных сопротивлений изоляции, определяющей состояние безопасности установки.
Безопасное пользование мегаомметром
Пользоваться мегаомметром можно только согласно правилам техники безопасности, измерения могут производить только два квалифицированных специалиста один из которых должен иметь группу допуска по электробезопасности IV. Не подготовленный пользователь не может пользоваться прибором, это чревато поражением электрическим током.
Мегаомметр принцип работы и его схема
Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время. Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах.
Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.
Рис №1: Внешний вид мегаомметра
Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.
Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.
Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.
Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г
Как проверить мегаомметр
Перед началом измерительных работ выполняется операция по проверке исправного состояния прибора и его поводков, для этого, провода, подсоединенные к прибору замыкают накоротко, и вращают ручку генератора, стрелка должна показать «0» короткое замыкание в положении переключателя «I». При проверке, во время замыкания проводов, нельзя касаться их голыми руками, можно получить удар током.
Как пользоваться мегаомметромили последовательность проведения измерительных работ:
- Присоединение мегаомметра к гнездам измерения сопротивления.
- Присоединение заземляющего проводника к гнезду экрана (кожуха).
- Установка переключателя в нужный предел проведения измерения, всего их два, чем выше мощность оборудования, тем больше диапазон измерения.
- Проверяем работу прибора замкнув измерительные щупы, одновременно вращая ручку.
- После присоединения измерительных шнуров вращаем ручку мегаомметра (генератора питания), скорость должна быть не менее 120 об в мин.
- Установление стрелки измерения в определенное положение является началом отчета измерения.
- Чтобы понизить время измерения сопротивления мегаомметром по II шкале гнезда сопротивления закорачиваем (перед началом замера) и вращаем ручку прибора примерно 5 сек.
- После применения мегаомметра переключатель устанавливаем в нейтральное положение.
Рис №3. Схема присоединения мегаомметра
Допустимая погрешность в работе мегаомметра составляет 0,05 Мом +-15%. Предел дополнительной погрешности связанный с наличием в цепи измерения токов с промышленной частотой в виде помех, составляет около 500 мкА. Прибор может эксплуатироваться при температуре в границах от 30 до +50 о С. На зажимах присутствует измерительное напряжение мегаомметра от 500 до 2500В, в зависимости от диапазона используемого измерения, поэтому по окончании измерения необходимо разрядить генератор, касаясь измерительными щупами «земли» или закоротить их на секунду, между собой, до электрического разряда.
Современные мегаомметры
В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.
Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.
Еще материалы по теме:
Вольтметр. Устройство, принцип работы, виды и характеристики Веерное отключение электричества – что это такое? Что такое диммер? Принцип действия и устройство Что такое энергоаудит, его основные направления и задачи
Как правильно пользоваться мегаомметром?
28.03.2016 нет комментариев 33 053 просмотров
Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.
Принцип действия прибора
Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.
В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.
Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).
Инструкция по эксплуатации
Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.
Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.
Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.
Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.
Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.
Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:
- Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
- Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
- Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
- Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
- Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
- Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
- В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.
По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.
Видеоуроки
Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:
Работа с моделью старого образца
Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:
Как использовать м4100
Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:
Инструкция по эксплуатации цифровой модели
Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:
Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.
Будет интересно прочитать:
Работа с моделью старого образца
Источники: http://electric-220.ru/news/kak_polzovatsja_megaommetrom/2016-09-05-1049, http://enargys.ru/megaommetr-chto-eto-takoe-i-kak-im-polzovatsya/, http://samelectrik.ru/kak-pravilno-polzovatsya-megaommetrom.html
electricremont.ru
Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен – зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) – мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметраОбозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Подборка видео по теме
www.asutpp.ru
Измерение сопротивления изоляции мегаомметром
Электрическая энергия передается по проводам, жилам кабелей, шинам. Электрический ток преобразуется в тепло в нагревательных элементах, создает вращающее магнитное поле в обмотках электродвигателей. Материалы, по которым он проходит, объединяет общее свойство: они проводят электрический ток. А свойство, характеризующее способность проводить ток лучше или хуже, называется электрическим сопротивлением.
Сопротивление материалов, называемых проводниками, относительно мало. Разница только в том, что у металлов и сплавов, использующихся для изготовления нагревательных элементов, оно повыше. За счет этого ток, проходя через них, вызывает их нагрев.
Но передача электроэнергии и функционирование всех электроприборов невозможна без материалов, имеющих противоположное свойство – не проводить ток. Такие материалы называют изоляторами.
Для проводов и кабелей изоляторами являются материалы, которыми покрыты токопроводящие жилы. Для нагревателей – термостойкое покрытие нагревательных элементов. Обмоточные провода электродвигателей покрыты тонким слоем лака. Все они выполняют функцию, сходную с водопроводной трубой: направляют ток в нужное русло, не позволяя ему попадать туда, куда не надо.
Состав изоляции кабеляНо идеальный изолятор в обычных условиях получить невозможно. Любой материал, не проводящий ток, обладает хоть и малым, но сопротивлением. Оно настолько незначительно, что им можно пренебречь, работоспособность электрооборудования от этого не ухудшается. Но состояние изоляторов может со временем измениться. В электрооборудование попадает вода. В чистом виде она является изолятором (дистиллированная вода), но в том, в котором она существует в быту, она – проводник. Попадая на изоляционные поверхности, она ухудшает их свойства и приводит к коротким замыканиям.
Фарфоровая изоляция нагревательного элемента в утюгеОболочки и изоляция жил кабелей и проводов со временем стареют или повреждаются. Процесс старения длится много лет, а повреждения возникают внезапно. Это можно не заметить, но начавшийся процесс ухудшения изоляции со временем развивается все быстрее, приводя к выходу оборудования из строя.
И если бы только оборудования. Короткие замыкания в кабелях или электроприборах приводят к пожарам. Ухудшение фазной изоляции приводит к появлению на корпусах электрооборудования опасных для жизни напряжений. А это уже угрожает жизни людей.
Как оценить состояние изоляции? Ведь ее повреждение происходит в местах, недоступных для осмотра. Для этой цели служат измерительные приборы, называемые мегаомметрами.
Принцип измерения сопротивления изоляции
Измерить сопротивление изоляции при помощи мультиметра не получится. Ведь, даже находясь под номинальным рабочим напряжением, она никак не проявляет признаков старения. Ток через поврежденные участки настолько мал, что его не измерить обычными методами. А через исправную изоляцию он еще меньше.
Для измерений используется напряжение постоянного тока повышенной величины. Почему постоянного? У кабелей существует небольшое емкостное сопротивление. А конденсатор проводит переменный ток. Измерения будут неточными, так как наличие емкостного тока снизит реальное значение сопротивления.
Повышенная величина напряжения нужна, чтобы заставить изоляцию стать проводником электрического тока. Кроме того, изоляция при измерении проходит испытание: выдержала повышенное напряжение, значит – и при номинальном сохранит свои характеристики. Производители рассчитывают изоляционные материалы своих изделий так, чтобы они выдерживали испытательное напряжение без повреждения. Поэтому кабели на напряжение 380 В переменного тока спокойно держат 1000 В постоянного от мегаомметра.
Принцип работы электромеханического мегаомметра
Задача любого мегаомметра – создать на измерительных выводах напряжение выбранной для измерений величины и измерить ток, проходящий по измеряемой цепи.
Сначала для генерации напряжения использовались электромеханические машины постоянного тока. Их роторы вращались при помощи рукоятки мегаомметра. Для того, чтобы генератор при измерениях выдавал номинальное напряжение, частоту вращений выдерживали в пределах 2 оборота в секунду.
Мегаомметр М4100Такие конструкции применялись в мегаомметрах М4100, но применяется и сейчас – в ЭСО 202. Достоинство этих приборов одно: им не требуется ни подключение к сети, ни батарейки или аккумуляторы. Но недостатков намного больше:
- Во время измерений корпус прибора сложно удержать в неподвижном состоянии. Вместе с корпусом дергается и стрелка, что снижает точность измерений.
- Показания прибора зависят от скорости вращения.
- В местах, где провода прибора при измерениях приходится держать руками (с применением диэлектрических перчаток, конечно), в измерениях участвуют два человека. Один обеспечивает контакт проводов с объектом измерений, другой – крутит ручку мегаомметра.
- При большом количестве требуемых измерений процесс происходит медленнее, чем при использовании электронных приборов.
Измерительная система электромеханических приборов – аналоговая, результаты считываются по шкале со стрелочным указателем. Дополнительный недостаток измерительной системы – шкала нелинейная, класс точности – небольшой.
Мегаомметр ЭСО 202Отличие современного прибора ЭСО 202 от М4100 – наличие переключателя напряжений, выдаваемых мегаомметром. Это удобно при измерениях на объектах, имеющих в составе электрооборудование, сопротивление изоляции которого измеряют при разных напряжениях. Например, кабели с напряжением 380 В (изоляция измеряется при 1000 В) и электродвигатели (500 В). В остальном приборы схожи, только переключение диапазонов измерений у М4100 производится на клеммах прибора, а у ЭСО 202 – переключателем.
Электронные мегаомметры
Следующим этапом развития мегаомметров стали электронные приборы. В них формирование испытательного напряжения осуществляет электронная схема, а измерение – аналоговый измеритель, тоже на полупроводниковых элементах. В схеме измерения ничего не поменялось, разве что пределов измерения стало больше. А вот необходимость крутить ручку устранилась.
Мегаомметр Ф4102Удобнее стало производить измерения коэффициента абсорбции. Он характеризует увлажненность изоляции. Для этого показания мегаомметра снимают через 15 и 60 секунд после начала измерения и последнее показание делят на первое. У изоляции с нормальным содержанием влаги этот коэффициент равен 1,3-2,0. Если он больше – изоляция слишком сухая, равен 1 – количество влаги в ней велико.
Крутить ручку минуту для измерения коэффициента абсорбции непросто, да и снимать показания по нелинейной шкале трудно. Да еще при этом производить отсчет времени, поглядывая на секундомер. Некоторые полупроводниковые же мегаомметры включали в себя индикатор, подающий сигналы через 15 и 60 секунд. Это позволяло оператору сосредоточиться на показаниях стрелки прибора и правильно считать их.
Но у полупроводниковых мегаомметров не было главного преимущества современных приборов – цифровой шкалы. Они были громоздкими, требовали питания от сети или батареек.
Микропроцессорные мегаомметры
Следующим этапом развития мегаомметров стали микропроцессорные приборы. Все, что необходимо для работы с ними – дисплей и кнопки, которыми задается рабочее напряжение. Остальное прибор делает сам, выдавая в итоге на дисплей конечный результат, и даже – реальную величину напряжения, которую удалось выдать на измерительный выход. При снижении значения изоляции контролируемого объекта прибор не может выдать номинального напряжения на выходе. В некоторых случаях знать это нужно.
Для измерений коэффициента абсорбции в некоторых моделях приборов не только выдается визуальный и звуковой сигнал через 15 и 60 секунд. Они фиксируют сопротивление изоляции в это время и самостоятельно подсчитывают коэффициент.
Комбинированный прибор MIC 3Микропроцессорные приборы компактнее своих предшественников. За счет этого появилась возможность совмещать в одном корпусе устройства различного назначения: для проверки сопротивления заземления, УЗО, петли фаза-ноль. Это удобно при выполнении комплексных измерений на объектах: работникам электролабораторий не нужно таскать с собой несколько приборов, достаточно одного.
Оцените качество статьи. Нам важно ваше мнение:
electric-tolk.ru