Содержание

Цифровой тюнер DVB-2 Strong SRT8500 — не включается

Дефект нередкий даже у совершенно новых тюнеров Strong SRT8500 .

Горит зелёный светодиод и больше никаких признаков жизни. Не реагирует на кнопки, не выдаёт картинку и звук.

Прошивать бесполезно. В данном случае присутствует отвал шаров под процессором.

Технология мало отличается от описанной здесь http://www.vseprosto.net/2013/02/propajka-chipseta-noutbuka-v-kolxoznyx-usloviyax/

Разница только в температуре.
Лечится прогревом на температуре около 280 градусов. Возможно можно было попробовать и ниже, но дуть приходилось с некоторого расстояния с насадкой около 1 см диаметром.

Старайтесь аккуратно, чтобы не деформировать пластмассу картоприёмника.
Грел в общем счёте около 5 минут с нижним подогревом, до тех пор пока не началось обильное испарение флюса.

Радиатор не снимал. Побоялся что снимется вместе с процессором. Тюнера сделаны гадостно. Пенсионерская халявная версия. Дохнут повсеместно и часто. У данного экземпляра задняя часть платы уже была со следами промывки флюса, при том что пломбу я срывал лично.

После плавного остывания, тюнер практически сразу включился и обновился. Включать лучше с предварительно всунутой антенной, чтобы избежать проблем с обновлением.
Обновление в подобных тюнерах вещь довольно интересная. Вы не можете отказаться от обновления программного обеспечения. Для меня это означает, что не вы управляете тюнером, и смотреть вы будете то, что интересно дяде с деньгами, а не вам лично.

Я так думаю народ ещё ждёт большой подарок от наших щедрых рукойводителей в виде платных каналов. Недаром же в тюнере присутствует место под карточку.

Самоубийство тюнеров, не единственная причина из гибели. Помогают и энергетики. Пара тюнеров не включались после перепада напряжения.

В одном случае достаточно было заменить тихо умерший ШИМ контроллер U901 — TNY176PN на другой такой же и аппарат запустился.

Схема кликабельна и неплохо читается.

Во втором не обошлось без спецэффектов. К микросхеме присоединились пара диодов, предохранитель, и сетевой конденсатор 10 мкф х 400 вольт.
Микросхема TNY176PN имеет аналоги и легко меняется на TNY275PN без всяких переделок.

www.vseprosto.net

Импульсный источник питания 12W на микросхеме TNY278P (TinySwitch-III).

Введение:

Данный документ описывает источник питания с универсальным входом, 12V, 1А, построенный по обратноходовой топологии на базе микросхемы TNY278P (семейство TinySwitch-III, Power Integrations). Документ содержит полную спецификацию на источник питания, его схему, перечень элементов, параметры и конструкцию трансформатора, а также замеры, произведенные во время работы опытного образца.

Внешний вид платы:

Рис.1 Внешний вид печатного узла (сверху).

 

Рис. 2 Внешний вид печатного узла (снизу).

Спецификация на источник питания:

Параметр

Обозначение

Мин.

Норма

Макс.

Ед. Изм.

Вход:

Напряжение

Частота

Потребление на Х/Х (без дополнительной обмотки).

Потребление на Х/Х (с дополнительной обмоткой).

 

Vin

fline

 

 

 

85

47

 

 

 

 

50/60

 

 

 

265

64

0.15

0.05

 

VAC

Hz

W

W

Выход

Выходное напряжение

Выходная пульсация

Выходной ток.

Полная выходная мощность

Продолжительная выходная мощность

 

Vout

Vripple

Iout

 

Pout

 

11

 

1

 

12

 

12

 

 

 

 

 

13

100

 

 

 

 

V

mV

A

 

W

КПД

При полной нагрузке

Среднее требуемое КПД при нагрузке 25%, 50%, 75% и 100% от Pout

 

n

ncec

 

75

71.3

 

%

%

Уровень ЭМИ

Безопасность

Удовлетворяет требованиям:

CISPR22B/EN55022B, IEC950, UL1950 класс 2.

Рабочий температурный диапазон

Tamb

0

_

50

C

Схема источника питания:

Рис. 3 Схема источника питания.

Описание работы схемы:

1) Входной выпрямитель и фильтр.

Переменное напряжение со входа выпрямляется диодами D1-D4. Конденсаторы С1 и С2 фильтруют выпрямленное напряжеие. Дроссель L1 вместе с конденсаторами С1 и С2 формируют П-образный фильтр для подавления дифференциальной помехи со входа.

2) Работа микросхемы TNY278P.

Микросхема TNY278P (U1) включает в себя генератор, контроллер, цепи запуска и защиты, а также мощный MOSFET транзистор.

Один контакт первичной обмотки силового трансформатора T1 подключен к положительному контакту конденсатора С2, когда как другой контакт этой обмотки подключен на пин DRAIN микросхемы U1. При начале рабочего цикла — контроллер отпирает MOSFET транзистор, через обмотку начинает расти ток, запасая энергию в сердечнике трансформатора. Когда ток достигает порогового значения, контроллер запирает MOSFET. Благодаря фазировке обмоток и полярности выпрямительного диода, запасенная в сердечнике энергия через выходной диод переходит в выходной конденсатор. При выключении MOSFET транзистора индукция рассеяния трансформатора провоцирует бросок тока через транзистор. Амплитуда этого броска лимитируется цепью RCD, состоящей из D5, C4 и R2. Резистор R2 ограничивает обратный ток через D5 в момент отпирания MOSFET транзистора.Это позволяет использовать в качестве диода D5 дешевый низкоскоростной диод.

Использую релейный метод управления (вкл/выкл) — U1 пропускае рабочие циклы для управления выходным напряжением на основе сигнала обратной связи на пин EN/UV. Перед тем, как запустить очередной рабочий цикл — микросхема проверяет сигнал на пине EN/UV и принимает решение будет сделан рабочий цикл или нет. Если ток через пин EN/UV меньше 115 uA, следующий рабочий цикл начинается и заказнчивается, когда ток через MOSFET достигает порога ограничения тока. Порог ограничения тока устанавливает контроллер, взависимости от мощности, потребляемой нагрузкой. При снижении потребления тока нагрузкой, соответственно падает порог ограничения.Это гарантирует то, что в любом случае при любой нагрузке рабочая частота будет находиться выше звукового диапазона. Кроме этого, если трансформатор при изготовлении пропитывается лаком, то звуковой шум практически исчезает.

3) Выходное выпрямление и фильтрация.

Диод D7 выпрямляет выход трансформатора T1. Пульсации выходного напряжения сведены к минимуму благодаря использованию Low ESR конденсатора С10. Высокочастотные шумы подавляются фильтром L2 C11.

4) Цепь обратной связи.

Уровень выходного напяжения определяется напряжением на диоде Зенера VR3, R6 и светодиодом оптопары U2. Величина резистора R4 рассчитывается исходя из условий тока через VR3 на уровне 0,5 mA. Резистор R6 ограничивает максимальный ток во время изменения нагрузки. Номиналы R4 и R6 могут быть незначительно изменены для точной подстройки порога выходного напряжения. Когда выходное напряжение превышает выходной порог, светодиод U2 начинает светить, При этом на первичной стороне, фототранзистор U2 открывается и замыкает ток EN/UV на землю. Как говорилось ранее, перед каждым циклом микросхема проверяет уровень тока EN/UV. Если он больше 115 uA — соответственно следующий рабочий цикл пропускается. При таком варьировании рабочих циклов величина выходного наряжения поддерживается на требуемом уровне с хорошей точностью. Если требуется большая точность в установке выходного напряжения, вместо VR1 можно использовать микросхему TL431.

5) Помехоподавление.

Входной Пи фильтр — С1, L1 и C2 снижает уровень дифференциальной помехи. Специальная технология намотки трансформатора (E-Shield) используется, чтобы подавить синфазную помеху. Резистор R2 и конденсатор С4 подавляют высокочастотный «звон» в момент, когда силовой транзистор запирается. Если рассмотреть все вышеописанное и прибавить к этому функцию помехоподавления frequency jitter, то мы получим великолепный характеристики ЭМИ.

6) Выбор уровня ограничения тока.

Применив микросхему семейства TinySwitch-III, мы имеем возможность устанавливать необходимый нам уровень тока через силовой транзистор микросхемы U1. Это делается варьированием номинала конденсатора на пине BP/M (для более полной информации необходимо ознакомиться с документом Datasheet на конкретную микросхему).

— При установке конденсатора номиналом 0.1uF — выбирается стандартный уровень ограничения тока микросхемы. Применяется для обычных мощностей в закрытом адаптере.

— При установке конденсатора номиналом 1uF — уровень ограничения тока понижается, что в свою очередь понижает потери и повышает КПД.

— При установке конденсатора номиналом 10uF — уровень ограничения тока повышается, что увеличивает мощностные характеристики микросхемы (Рекомендуется для применения при открытом корпусном исполнении, либо в закрытом, но если нагрузка источника краткосрочна).

Пример печатной платы источника питания:

Рис.4 Пример PCB печатной платы.

 

Перечень элементов.

Номер

Кол-во

Обозначение

Номинал

Описание

part number

Производитель

1

1

C1

6.8 uF

6.8 µF, 400 V, Electrolytic, (10 x 16)

EKXG401ELL6R8MJ16S

United
Chemi-Con

2

1

C2

22 uF

22 µF, 400 V, Electrolytic, Low
ESR, 901 m., (16 x 20)

EKMX401ELL220ML20S

United
Chemi-Con

3

1

C4

10 nF

10 nF, 1 kV, Disc Ceramic

5HKMS10

Vishay

4

1

C5

2.2 nF

2.2 nF, Ceramic, Y1

440LD22

Vishay

5

1

C7

100 nF

100 nF, 50 V, Ceramic, X7R

B37987F5104K000 / ECUS1h204KBB

Epcos/
Panasonic

6

2

C6,C8*

1 uF

1 µF, 50 V, Electrolytic, Gen.
Purpose, (5 x 11)

EKMG500ELL1R0ME11D

United
Chemi-Con

7

1

C9*

10 uF

10 µF, 50 V, Electrolytic, Gen.
Purpose, (5 x 11)

EKMG500ELL100ME11D

United
Chemi-Con

8

1

C10

1000 uF

1000 µF, 25 V, Electrolytic, Very
Low ESR, 21 m., (12.5 x 20)

EKZE250ELL102MK20S

United
Chemi-Con

9

1

C11

100 uF

100 µF, 25 V, Electrolytic, Very Low
ESR, 130 m., (6.3 x 11)

EKZE250ELL101MF11D

United
Chemi-Con

10

4

D1 D2 D3 D4

1N4007

1000 V, 1 A, Rectifier, DO-41

1N4007

Vishay

11

1

D5

1N4007GP

1000 V, 1 A, Rectifier, Glass
Passivated, 2 us, DO-41

1N4007GP

Vishay

12

1

D6

UF4003

200 V, 1 A, Ultrafast Recovery,
50 ns, DO-41

UF4003

Vishay

13

1

D7

BYV28-200

200 V, 3.5 A, Ultrafast Recovery,
25 ns, SOD64

BYV28-200

Vishay

14

1

F1

3.15 A

3.15 A, 250V,Fast, TR5

3701315041

Wickman

15

2

J1 J4

Test Point, Black, Thru-hole mount

5011

Keystone

16

1

J2

Test Point, White, Thru-hole mount

5012

Keystone

17

1

J3

Test Point, Red, Thru-hole mount

5010

Keystone

18

1

JP1

Wire Jumper, Insulated, 24 AWG

KSW24W-0100

OK Indust.

19

1

L1

1 mH

1mH, 350 mA

HTB2-102-281

CUI

20

1

L2

Ferrite Bead

3.5 mm x 7.6 mm, 75 . at 25 MHz,
22 AWG hole, Ferrite Bead

2743004112

Fair-Rite

21

1

R1

1 KOhm

1 k., 5%, 1/4 W, Carbon Film

CFR-25JB-1K0

Yageo

22

1

R2

100 Ohm

100 ., 5%, 1/4 W, Carbon Film

CFR-25JB-100R

Yageo

23

1

R3

47 Ohm

47 ., 5%, 1/8 W, Carbon Film

CFR-12JB-47R

Yageo

24

1

R4

2 KOhm

2 k., 5%, 1/8 W, Carbon Film

CFR-12JB-2K0

Yageo

25

1

R5*

3.6 MOhm

3.6 M., 5%, 1/2 W, Carbon Film

CFR-50JB-3M6

Yageo

26

1

R6

390 Ohm

390 ., 5%, 1/8 W, Carbon Film

CFR-12JB-390R

Yageo

27

1

R7

20 Ohm

20 ., 5%, 1/4 W, Carbon Film

CFR-25JB-20R

Yageo

28

1

R8*

21 KOhm

21 k., 1%, 1/4 W, Metal Film

MFR-25FBF-21K0

Yageo

29

1

RV1

275 VAC

275 V, 45 J, 10 mm, Radial

V275LA10

Littlefuse

30

1

T1

EE25 Core

Bobbin, EE25, Vertical, 10 pins
Complete Assembly

YW-360-02B
SNX-1380
LSPA20544
CWS-T1-EP91
SIL6038

Yih-Hwa
Enterprises
Santronics
LiShin
CWS
Hical

31

1

U1

TNY278P

TinySwitch-III, TNY278P, DIP-8C

TNY278P

Power
Integrations

32

1

U2

PC817A

Optocoupler, 35 V, CTR 80-160%,
4-DIP

ISP817A, PC817X1

Isocom,
Sharp

33

1

VR1

P6KE150A

150 V, 5 W, 5%, TVS, DO204AC
(DO-15)

P6KE150A

Vishay

34

1

VR2

1N5255B

28 V, 500 mW, 5%, DO-35

1N5255B

Microsemi

35

1

VR3

BZX79-B11

11 V, 500 mW, 2%, DO-35

BZX79-B11

Vishay

Трансформатор.

1) Схема электрическая.

Рис.5 Электрическая схема трансформатора.

2) Электрическая спецификация.

Электрическая прочность 1 с., 60Hz, с пинов 1-5 на пины 6-10. 3000 VAC
Индуктивность первичной обмотки Пины 1-3, все обмотки разомкнуты, на 100 KHz, 0.4VRMS. 1050uH, +/- 10%
Резонансная частота Пины 1-3, все обмотки разомкнуты. 500 KHz (Мин.)
Индукция рассеяния первичной обмотки Пины 1-3, пины 6-8 закорочены, на 100 KHz, 0.4VRMS. 50 uH (Макс.)

3) Схема построения трансформатора.

Рис. 6 Схема построения трансформатора.

Диаграммы работы источника питания.

1) КПД

Рис.7 Зависимость КПД от выходного тока, комнатная температура, 60 Hz.

Для справки — с 1 июля 2006 года в США все выпускаемые и продаваемые источники питания должны соответствовать стандартам, установленным организацией СЕС (California Energy Comission) — Калифорнийской комиссией по энергетике, которая определяет тенденции развития энергетики США.

По требованиям СЕС — Среднее КПД источника питания по 4м замерам (25%,50%,75%,100% от максимальной мощности) должен быть равен или выше 71.3%.

По проделанным замерам ИП на микросхеме TNY278P:

Процент от полной нагрузки

КПД (%)

 

115 VAC

230 VAC

25

75

74.5

50

78.5

78.8

75

78.8

78.5

100

78

79.1

Среднее значение КПД

77,6

77,7

Требования СЕС

71,3

Как мы можем видеть, КПД источника питания на базе микросхемs TNY278P (Power Integrations) — полностью удовлетворяет требованиям СЕС и следовательно имеет право на производство и продажу на рынке США.

2) Потребление источника питания на холостом ходу (Резистор R8 — не установлен).

Рис. 8 Зависимость потребляемой мощности на холостом ходу от входного напряжения, комнатная температура, 60Hz.

3) Потребление источника питания на холостом ходу (Резистор R8 — установлен).

Рис.9 Зависимость потребляемой мощности на холостом ходу от входного напряжения, комнатная температура, 60Hz.

4) Зависимость выходной мощности от входной мощности в 1,2,3 Вт.

Рис.10 Зависимость выходной мощности от входного напряжения (при Pin=1,2,3W).

5) Нестабильность выходного напряжения.

Рис. 11 Нестабильность выходного напряжения, комнатная температура.

6) Тепловые характеристики.

Температура замерялась с помощью Т-образных термопар. Термопары были подсоединены на пин SOURCE миросхемы U1 и на катод выходного выпрямительного диода. Кроме этого другие 2 термопары были приклеены к корпусу выходного конденсатора и на поверхность обмоток трансформатора T1.

Источник питания был помещен в короб для предотвращения движения воздуха. Короб был помещен в термошкаф. Температура внутри шкафа установлена в 50С. Замеры были проведены после 1 часа работы источника питания.

Температура (С).

Элемент

85 VAC

265 VAC

Окружающая среда

50

50

TNY278P (U1)

96,1

92,8

Трансформатор (T1)

77,8

80

Выходной выпрямитель (D7)

101

100

Выходной конденсатор (С10)

68,2

66,8

Рис.12 Тепловая карта работы ИИП.

Автор документа — Департамент по применению Power Integrations.

Более подробную информацию вы можете узнать, прочитав оригинал.

Перевел и подготовил — Бандура Геннадий (Bandura (at) macrogroup.ru).

Менеджер по направлению Power Integrations

Компания Макро Групп (Эксклюзивный дистрибьютор Power Integrations на территории России и СНГ).

www.macrogroup.com

www.qrz.ru

Микросхемы маломощного высоковольтного импульсного преобразователя серии TNY2xx

Эти микросхемы выпускаются компанией POWER Integrations и являются высокоэффективным обратноходовым преобразователем с выходной мощностью 1…20Вт. Электрические характеристики микросхем приведены в табл. 1.3, мощность указана из расчета, что микросхема будет стоять в закрытом корпусе адаптера, без радиатора, при температуре окружающей среды +50 °С и находится на пороге срабатывания термозащиты.

Таблица 1.3. Микросхемы высоковольтного импульсного преобразователя серии TNY2xx

Микро

Семейство

Выходная

Максимальный

Сопротивление Частота

схема

 

мощность, Вт,

ток стока, мА

канала, Ом

генера

 

 

при входном

 

(при 25 ЖС)

тора,

 

 

напряжении, В

 

 

кГц

 

 

230

85…265

 

 

 

TNY253

TinySwitch

0…4

0…2

150

35

44

TNY254

 

2…5

1…4

255

31

44

TNY255

 

4… 10

3,5…6,5

280

23

130

TNY256

TinySwitch Plus

8… 15

5… 10

500

16

130

TNY263

TinySwitch II

5

3,7

210

33

132

TNY264

 

5,5

4

250

28

132

TNY265

 

8,5

5,5

275

19

132

TNY266

 

10

6

350

14

132

TNY267

 

13

8

450

7,8

132

TNY268

 

16

10

550

5,2

132

TNY274

TinySwitch III

6

5

250

28

132

TNY275

 

8,5

6

275

19

132

TNY276

 

10

7

350

14

132

TNY277

 

13

8

450

7,8

132

TNY278

 

16

10

550

5,2

132

TNY279

 

18

12

650

3,9

132

TNY280

 

20

14

750

2,6

132

TNY375

TinySwitch-PK

8,5

6

355

19

264/132

TNY376

 

10

7

455

14

264/132

TNY377

 

13

8

585

7,8

264/132

TNY378

 

16

10

715

5,2

264/132

TNY379

 

18

12

845

3,9

264/132

TNY380

 

20

14

975

2,6

264/132

При наличии теплоотвода эта цифра будет в 1Д..2 раза выше. Основная сфера применения микросхем серии TNY2xx – малогабаритные зарядные устройства, подпитка компьютерного и другого оборудования в ждущем (Stand By) режиме, маломощные цифровые устройства с сетевым питанием.

Выпускаются микросхемы в корпусе DIP (TNY2xxP), корпусе DIP для поверхностного монтажа (TNY2xxG), микросхема TNY256Y- в корпусе ТО-220-5, расположение выводов показано на рис. 1.28.

Рис. 1.28. Расположение выводов микросхем TNY2xx

Особенности микросхем семейства TinySwitch

Особенности микросхем семейства TinySwitch таковы:

•         встроенный силовой транзистор, его максимально допустимое обратное напряжение 700 В;

•         очень низкое собственное энергопотребление – менее 0,06 Вт при входном напряжении 230 В;

•         встроенные защита от перегрева и ограничитель выходного тока;

•         малоинерционная цепь обратной связи, благодаря чему снижаются пульсации выходного напряжения.

Дополнительно в микросхемы семейства TinySwitch Plus встроена схема автоматического рестарта при коротком замыкании выхода (32 мс работает, если выход коротко замкнут, – отключается на 128 мс, после чего снова повторяет попытку старта). Благодаря этому выход микросхемы из строя, даже при длительной работе в состоянии короткого замыкания выхода, практически невозможен.

TinySwitch II

Вдобавок ко всему вышеперечисленному в микросхемах семейства TinySwitch II:

•         повышена до 132 кГц рабочая частота – это позволило использовать трансформатор гораздо меньших размеров;

•         добавлена схема джиттера (диапазон рабочей частоты в пределах 128… 136 кГц) – благодаря этому заметно снизился акустический «звон» от работающего преобразователя;

•         удален вывод 6, поэтому расстояние между высоковольтным выводом стока и остальными выводами увеличилось до 5…7,5 мм – то есть уменьшились требования к точности и качеству изготовления печатной платы;

•         в схему питания микросхемы добавлен защитный стабилитрон, благодаря чему она стала более надежной.

TinySwitch III

В микросхемах третьего поколения семейства TinySwitch III улучшены все вышеперечисленные параметры и добавлен регулируемый ограничитель тока: при емкости конденсатора на выводе BP 0,1 мкФ максимальный выходной ток микросхемы соответствует указанному в табл. 1.3, при емкости этого конденсатора 1 мкФ максимальный выходной ток уменьшается до тока «младшей» микросхемы (то есть, например, TNY276 превращается в TNY275), а при емкости 10 мкФ – увеличивается до тока у старшей (TNY276 превращается в TNY277; кроме TNY274, у которой ток остается уменьшенным). Это позволяет более точно подстроить ток ограничения, не покупая другую микросхему. Однако сопротивление канала выходного транзистора при этом не изменяется, поэтому более «слабые» микросхемы при подобном «разгоне» греются чуть сильнее.

Типовая схема включения микросхем всех семейств показана на рис. 1.29.

На рис. 1.30 представлена схема включения TNY254 в качестве преобразователя напряжения от телефонной линии, которую можно использовать и при решении других задач радиолюбителя.

Рис. 1.29. Типовая схема включения микросхем всех рассмотренных семейств

 

Особенности включения микросхем семейства TinySwitch

Отличительная особенность микросхем этого семейства – для питания цепи обратной связи (оптрона) не нужен дополнительный источник питания: микросхема генерирует этот ток (240 мкА) сама. В итоге третья обмотка трансформатора, имеющаяся почти во всех импульсниках на микросхемах других производителей или на транзисторах, не нужна – то есть получается экономия и на обмотках, и на внешних деталях (не нужны дополнительные диод и конденсатор), и на размере и сложности платы.

Выпрямленное сетевое напряжение сглаживается конденсатором С1 и через первичную обмотку трансформатора Т1 поступает на вывод стока встроенного в микросхему DA1 транзистора. Благодаря встроенной схеме питания (ее выход – вывод BP, подключать к этой ножке другие нагрузки запрещено!) напряжение на фильтрующем конденсаторе СЗ возрастает до рабочих 5 В, после чего начинается генерация. Напряжение на выходе преобразователя возрастает, когда оно достигает напряжения стабилизации стабилитрона, – начинает светиться светодиод оптрона V01, его фото.транзистор шунтирует вход EN на корпус, и генерация срывается. Как и большинство аналогичных микросхем, эти микросхемы работают в старт-стопном режиме и не имеют ШИМ.

На элементах VD2-R2-C2 собрана схема ограничителя выбросов (soft clamp) в момент выключения транзистора, она обязательна для надежной работы любого подобного устройства. Диод VD2 может быть любым быстродействующим высоковольтным, его можно заменить на 1N4937 или UF4006, конденсатор С2 – пленочный или керамический с рабочим напряжением от 400 В. Сопротивление резистора R1 для микросхем с выходной мощностью менее 5 Вт можно увеличить до 150 кОм, для микросхем с мощностью более 20 Вт – желательно уменьшить до 75 кОм.

Для еще большей экономии потребляемого тока, увеличения быстродействия и уменьшения помех в микросхемах TNY256 и старше между положительным выводом конденсатора С1 и входом EN микросхемы нужно поставить резистор сопротивлением 2…4 МОм. Одновременно активируется защита от работы при пониженном напряжении питания (undervoltage) – при указанных сопротивлениях резистора микросхема будет выключаться, соответственно, при напряжении ниже 100…200 В.

Рекомендуемый вариант печатной платы устройства показан на рис. 1.31.

Рис. 1.31. Рекомендуемый вариант печатной платы устройства

Дополнительную информацию по микросхемам этого семейства можно получить по ссылке http://www.powerint.com.

nauchebe.net

cxema.org — Блок питания на TNY266PN

Блок питания на TNY266PN

А началось всё так: поставил я как то раз заряжать телефон. Заряжается долго, мне это не понравилось, дай, думаю, сделаю зарядку помощнее. Стал думать, как бы мне сделать компактную и мощную зарядку, да чтоб напряжение было стабилизированным, не проседало под нагрузкой. Линейные стабилизаторы сразу отбросил, так как при токе в 3А они будут греться, значит придётся ставить радиатор, а это уже не компактно. Да и КПД ниже. Сначала решил делать полумостовой блок питания с обратной связью, ибо большая мощность, но сразу отказался от этой затеи из-за больших размеров. В конце концов пришел к выводу, что надо делать обратноходовый бп, они неболших размеров и стабилизированные. Так как мне нужна была мощность в 15 Ватт, была выбрана микросхема TNY266PN. В идеале надо брать микросхему по мощнее, либо не нагружать эту впритык, так как всегда нужен запас по мощности, но у меня была только такая, поэтому решил на ней и сделать. Схему взял из даташита, но немного изменённую:

Итак, какие можно призвести замены? Во-первых можно увеличить ёмкость фильтрующего конденсатора до 22 мкФ (на плате место предусмотрено), во вторых конденсатор снаббера можно ставить и на 2 кВ и на 1 кВ (но не желательно). Резистор, который стоит параллельно ему тоже можно изменять от 180 до 470 кОм. Конденсатор между 1 ножкой микросхемы и минусом любой на напряжение от 50 В (в моём случае керамика) и ёмкость от 100 нФ. Оптрон любой с транзисторным выходом (у меня CNY17-2). Диод шоттки на выходе на ток от 3 А, можно поставить два параллельно, но на плате мето не предусмотрено, да и указанный на схеме 1N5822 отлично справляется. Стабилитрон любой на 3.9 В и мощность от 1 Вт. Подстроечный резистор нужен для выставлнения 5В на выходе, резистор на 220 Ом необходимо подбирать самому. Ах да, мост на входе можно ставить любой от 0.5 А, но лучше на 1А.
Теперь самое весёлое — трансформатор, вернее дроссель, как его правильно следует называть, т.к. в нём запасается энергия. Я гнался за компактностью и взял сердечник от старой энергосберегающей лампы, он как раз с магнитным зазором. Рабочая частота микросхемы 132 кГц. Рассчитывать нужно индивидуально под каждый сердечник по специальной программе, но если кому интересно, у меня на сердечнике E16/8/6.5 первичка намотана 140 витков проводом 0.2 мм, вторичка 6 витков сдвоенным проводом 0.8 мм. Важно мотать обе обмотки в одну сторону. Вот что у меня получилось:

 

Вот что показывает осцилограф:

Как видно, есть небольшие пульсации, но это в принципе терпимо для такого блока пиатния.
Теперь немного о готовом изделии. Плюсы данной конструкции во-первых в её простоте, во-вторых в надежности — при перегрузке/кз напряжение сбрасывается почти до нуля, тем самым спасая микросхему от выхода из строя. Это я узнал, случайно закоротив выходы бп. Минус этой микросхемы в том что сопротивление канала внутреннего полевого транзистора 14 ом, из-за чего она нагревается при больших нагрузках.
Вот, пожалуй всё, что я хотел сказать про этот блок питания, хороший он или нет, решать вам. Если возникнет желание собрать, печатную плату я прилагаю. Если возникнут вопросы, задавайте их мне на почту Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. или на форум.

Печатная плата

 

  • < Назад
  • Вперёд >

vip-cxema.org

Блок питания на TinySwitch / Силовая электроника / Сообщество EasyElectronics.ru

Для зарядника для шуруповерта потребовался блок питания 20-21В с выходным током 0.4А, причем в корпусе родного (дабы в родной кейс лез без проблем). Что ж, требованиям опять-таки больше всего удовлетворяет импульсник, так что вперед!

После изрядного количества экспериментов, в которых питальники грелись, пускали Хоттабыча либо не выдавали нужной мощности пришлось-таки почитать Семенова 🙂 В результате определилась топология (флайбэк) и основа — микросхема из серии TinySwitch II фирмы Power Integrations (PI). Фирма специализируется на разработке и выпуске микросхем для всевозможных источников питания и делает весьма интересные вещички. Серия TinySwitch же представляет собой линию контроллеров сетевого источника питания по топологии флайбэк со встроенным высоковольтным MOSFET ключом.

Внимание!
Большая часть схемы находится под опасным для жизни напряжением!
Запрещается:
  • Лезть во включенное в сеть устройство руками, паяльником и прочими предметами.
  • Лезть в устройство ранее, чем через 5 минут после отключения от сети.
  • Пользоваться устройством без надежного изолирующего корпуса.
  • Питать от него устройства, не имеющие двойной изоляции, без использования УЗО.

Топология флайбэк

Флайбэк, или обратноходовый преобразователь — одна из топологий однотактных импульсных преобразователей, в которой фазы накопления и отдачи энергии трансформатором разделены во времени (энергия отдается трансформатором в нагрузку во время обратного хода, отсюда и название Fly Back).

Работает схема довольно просто.

В первой фазе — накопления энергии — транзистор открывается и в трансформаторе, как в дросселе, накапливается энергия (точнее, он дроссель и есть, но я буду называть его трансформатором). При этом ток линейно растет (ну, по крайней мере если сердечник не насытится, но это уже не рабочий режим, поэтому допускать его не следует), напряжение с вторичной обмотки приложено к диоду VD1 в обратном направлении и поэтому ток в выходной цепи поддерживается только конденсатором Cout. Приложенное к VD1 напряжение, кстати, равно Uout + W2 * Uin / W1, что следует учитывать при выборе диода.

Во второй фазе — передачи энергии — транзистор закрывается, ток через первичную обмотку прекращается и напряжение на W2 меняет полярность. Диод открывается и трансформатор сбрасывает накопленную энергию в нагрузку. Вообще, по принципу работы флайбэк больше похож на step-up, чем на все остальные трансформаторные преобразователи (мост, полумост, прямоход, пуш-пул). Кроме того, так же, как и step-up, флайбэк может выдать на выходе напряжение, ограниченное только утечками, при отсутствии нагрузки. Именно поэтому неуправляемых флайбэков не бывает вообще, даже дешевые китайские зарядки на одном транзисторе имеют целых два кольца ОС. Выходное напряжение в фазе передачи трансформируется в первичную обмотку и прикладывается к транзистору, суммируясь с индуктивным выбросом от индуктивности рассеяния (это та часть накопленной энергии, которая не может быть сброшена через вторичную обмотку, т.к. накоплена в не связанном с ней магнитном поле), что приводит к необходимости включения специальной цепи ограничения напряжения на VT1, причем эта цепь должна стравливать только выброс от индуктивности рассеяния, но не трансформированное напряжение вторичной обмотки. Последнее, как правило, выбирается в районе 200В, так что на транзисторе при штатной работе напряжение 500-550В.

К плюсам флайбэка относятся:

  • Принципиально ограниченная передаваемая мощность — поэтому режим КЗ большинству флайбэков не вреден. Кроме того, из-за этого свойства несложный флайбэк может использоваться как источник тока для зарядки NiCd/NiMH аккумов или питания мощных СИДов даже без обратной связи из вторичной цепи.
  • Простота схемы — при малых мощностях (до 50-200 Вт) флайбэки оказываются самыми дешевыми схемами. Да и заставить их работать тоже несложно.
Есть и минусы:
  • Трансформатор работает в режиме дросселя — потому его габариты больше, чем в схемах с нормальным трансформатором. Кроме того, с повышением мощности режим ключевого транзистора становится все тяжелее. Поэтому на большие мощности флайбэки не делают — они становятся слишком большими и дорогими.
  • Трансформатор работает в режиме однополярных токов и потому требует введения зазора или сердечника из специального материала (микропорошковые и подобные, обычно кольца). Это не очень удобно для радиолюбителей, тем более что зазор нужно выдерживать достаточно точно, а его величина редко превышает доли миллиметра.

Описание микросхемы

В качестве основы блока выбрана микросхема TNY266PN. Она относится к серии TinySwitch II и выбрана по принципу «чтобы поддерживалась PI Expert 7, была в магазине и обеспечивала достаточную мощность». Первый пункт отметает все TinySwitch I (сцуко PI пиарит новые серии методом выпиливания поддержки старых из PI Expert, а найти старые версии оказалось не столь просто), второй отметает TNY265, которая вообще-то по третьему пункту проходила. Микросхемы в серии TinySwitch II отличаются только предельной мощностью нагрузки — она определяется токоограничителем внутри микросхемы.

Выпускается микросхема в нескольких корпусах, в том числе в SOP7 и DIP7 (это SOP8/DIP8 соответсвенно с выпиленной ножкой за номером 7). Выводов у микры всего 4, однако один из них — S — выведен на целых четыре ножки. Через них и осуществляется отвод тепла, так что запаивать их следует в полигон без термоперехода. D выведен на 8-ю ножку, так что отсутствующая 7-я увеличивает зазор между ним и S. EN/UV — ОС и управление функцией UVLO (UnderVoltage LockOut). Последний, BP — для кондера, фильтрующего питание микросхемы, кроме того, через него можно подавать внешнее питание на микросхему, это позволяет снизить потребляемую при отсутствии нагрузки мощность в пять раз, до 50 мВт.

Плюсы микросхемы:

  • Почти все необходимое — внутри, включая высоковольтный (700В) ключ.
  • Всевозможные встроенные защиты, заметно усложняющие сжигание микросхемы экспериментами.
  • Отсутствие необходимости в обмотке питания МС.

Работает микросхема довольно просто. ШИМ имеется только токовый — т.е. выходной транзистор открывается по тактовому импульсу, а закрывается либо по таймауту (ограничение максимального рабочего цикла Dmax), либо при достижении током стока максимального значения (оно определяет максимальную мощность источника, именно его значением и отличаются разные МС серии). Стабилизация выходного напряжения выполняется в ключевом режиме — как только вывод EN/UV придавливается к земле — преобразование прекращается, и возобновляется при отпускании. Порог переключения задан по току — отключается при вытекающем из пина EN/UV токе более 240 мкА. Этот же вывод отвечает за функцию UVLO — для ее включения его нужно подтянуть резистором к питанию микросхемы.

В принципе, можно покурить даташит и посчитать схему самому. Но проще воспользоваться PI Expert’ом, тем более мои познания на тот момент были недостаточны для ручного расчета.

Расчет схемы в PI Expert

Прежде всего определимся с трансформатором. Дело в том, что его обычно приходится откуда-то выдергивать, а не покупать тот, что программа посчитает нужным. Я выбрал сердечник EE19, на котором был намотан дроссель в ЭПРА от КЛЛ на ватт 20 чтоли.

Далее определимся с микросхемой. Можно покурить даташит и выбрать там подходящую по мощности МС, можно запустить встроенный в программу Product Selector Guide. Первый путь (в сочетании с прайсом Промэлектроники) определил выбор как TNY266PN. Так что тыкаем New и начинаем отвечать на вопросы визарда.

Прежде всего выберем семейство микросхем TinySwitch-II:

На второй страничке в общем-то ничего интересного — там предлагается выбрать параметры входного напряжения. К нашим реалиям больше всего подходит «AC Defaults -> Single 230V».

А вот на следущей страничке нужно указать параметры выходных напряжений и режим стабилизации — CV (стабилизация напряжения) или CV/CC (стабилизация напряжения с ограничением тока, для зарядников).

На следущей страничке — параметры проекта. Здесь надо поставить галочки SI-Units (чтобы оно выдавало результаты в системе СИ, а не всяких там дюймах) и Show Settings for New Design (здесь можно уточнить задание для программы). При желании можно отметить Use Shield Windings, это уменьшит помехи, но усложнит конструкцию трансформатора.

Появится окошко настроек оптимизации. Здесь можно настроить некоторые фильтры, ограничивающие выбор вариантов, которые проверит программа в поисках наиболее оптимального. Основное — лишить ее выбора в плане сердечника. Еще можно указать пределы по количеству витков в основной выходной обмотке.

После этого программа немного подумает и выдаст табличку наиболее удачных результатов. Выбираем какой понравится и жмем ОК.

Вот теперь мы возвращаемся в основное окно программы и видим нечто вроде этого.

Однако, микросхему программа выбрала не ту, да и некоторые другие детали тоже не устраивают. Так что прежде всего идем в PI Device -> PI Device Selection и меняем на TNY266. Теперь нужно повторить оптимизацию проекта. Для этого жмем Start Optimization на тулбаре или в меню Active Design. В результате транс поменялся на 83/17 витков. Это уже чуть проще намотать.

После этого можно последовательно пройтись по пунктам в дереве слева и поменять некоторые значения.

В разделе Specifications и Design врядли придется что-то менять, там данные, скормленные мастеру. Разве что Stacking — оно определяет, будут ли использоваться обмотки с отводами (Stacking) или независимые (Floating).

В Input Stage можно поменять детальки на те, что есть. Например, отказаться от двухступенчатого фильтра и поставить конденсатор на 10 мкФ, вместо предложенного на 6.8, потому как есть в загашнике.

Два раздела после PI Device позволяют поиграться с ручной оптимизацией трансформатора. Пока пропустим.

Output Stage чуть интересней. Тут выбран диод MUR115 — обычный кремниевый диод. А хотелось бы шоттки. Если потыкаться с выбором диода, то выяснится, что нужен он аж на 100В. Изначально там такого не было, но изучение прайса Промэлектроники выдало диод 11DQ10 (1.1A, 100V). Добавляем его в библиотеку (об этом чуть позже) и указываем программе. Теперь сообщает, что Design Passed (т.е. не содержит ошибок), но появилось замечание о малом запасе по напряжению диода.

Далее. Мне так и не удалось заставить PI Expert сгенерировать те же результаты, что и в прошлый раз, когда я собственно источник и расчитывал. Поэтому схема отличается от посчитанного. К тому же, там PI Expert не имеет претензий к выбранному диоду, а транс имеет 85/13 витков.

Теперь, имея результаты расчета, можно погулять по вкладкам, посмотреть расчитанные значения и нарисовать полную схему.

Окончательная схема

По сравнению с блоксхемой:

  • Появился предохранитель. Абсолютно необходимая вещь для всех сетевых источников.
  • Резистор UVLO разделен на 2. Это сделано из соображений снижения напряжения на нем.
  • Добавился конденсатор C3. Точно не знаю, зачем он нужен, но вроде уменьшает помехи и препятствует возникновению большого напряжения между обмотками, которое может пробить трансформатор. Должен быть класса Y1. Не знаю, правда, какие это параметры, поэтому заменил обычной высоковольтной керамикой на 3 кВ.

Трансформатор

Изготовление трансформатора — одна из самых важных частей работы. От этого зависит безопасность блока и будет ли он вообще работать.

Итак, прежде всего безопасность. Поскольку намотать с предлагаемыми PI Expert’ом отступами возможности нет — вторичку следует мотать если и не рекомендуемым TIW (Triple Insulated Wire — провод в тройной изоляции, двухслойная лаковая плюс ПВХ), то хотя бы просто изолированным проводом, между обмотками проложить изоляцию (2-3 слоя толстой ленты ФУМ), озаботиться изоляцией выводов первички от витков вторички. Нелишне пропитать обмотки лаком — это не только обеспечит дополнительную изоляцию, но и будет препятствовать писку трансформатора (частота включения/выключения генерации, за счет чего стабилизируется выходное напряжение, часто оказывается в слышимом диапазоне). Снаружи вторичную обмотку тоже следует обмотать ФУМ или изолентой.

Следущий вопрос — зазор. Его нужно выдерживать с достаточной точностью. Можно, конечно, взять микрометр и попытаться подобрать прокладку толщиной 0.127/2 мм (0.063 мм, ага), но это довольно сложно. Лучше подбирать зазор контролируя индуктивность первички L-метром. Можно подбирать прокладку, можно немного сточить центральный керн одной из половинок на мелкой наждачке. Я делал по второму варианту. Он, правда, необратим, так что если БП внезапно станет не нужен и отправится в разборку — убрать зазор из сердечника уже будет нельзя.

После подгона зазора сердечник склеивается (лучше суперклеем, он хорошо выгорает при температуре жала паяльника, что облегчает разборку трансформатора, если что), обматывается изолентой и заливается лаком, чтоб не болтался.

Настройка
Не требуется. Разве что подобрать стабилитрон для получения нужного напряжения на выходе.
Печатка

Не дам. Она сильно неоптимальная и вообще выполнена в ворде(!) и нарисована маркером. А вот вопросам трассировки в даташите уделен целый раздел.

  • Одноточечная земля (или как ее там). Дорожки от конденсатора ВВ выпрямителя (C2) и конденсатора на пине BP (C4) должны соединяться только в одной точке — на пине Source микросхемы.
  • Теплоотвод. Ножки Source выполняют роль теплоотвода, поэтому должны паяться к полигону максимально возможной площади. То же относится и к полигонам, к которым паяются выводы (оба) выходных диодов (VD4).
  • Петли импульсных токов. Для минимизации излучения помех следует минимизировать площадь, охватываемую петлями, образованными цепями C2-T1.W1-U1.D/S и W2-VD4-C5/6.
  • Ограничитель выбросов. Цепочку VD2-VD3 следует подключать к трансформатору и микросхеме максимально короткими дорожками.
  • Пин EN/UV. Следует располагать резистор R2 максимально близко к нему. Также, не следует забывать о напряжении на резисторах. Так, резисторы мощностью 0.25Вт расчитаны на напряжение до 200В. Именно поэтому их два, соединенных последовательно.
  • Y-конденсатор. Его (C3) следует подключать короткими дорожками прямо к соответсвующим выводам трансформатора.
  • Оптопара. Дорожку от оптопары до пина EN/UV следует делать предельно короткой (не более 12.7мм) и не ближе, чем 5.1мм к пину Drain (и соединенным с ним дорожкам).
  • Входной и выходной конденсаторы. Они должны быть разведены так, чтобы у тока не было обходных путей вокруг их пинов. То есть, линия должна проходить от выпрямителя через пин конденсатора (сужаясь при этом до ширины пятака) и затем идти на нагрузку. Пайка конденсаторов С2 и С5/6 к полигону нежелательна, а на аппендиксах — и подавно. Кроме того, минусовую ножку С5/6 следует подключать максимально короткой дорожкой прямо к ножке трансформатора, но не к линии Y-конденсатора.

Девайс в сборе

Россыпь деталюшек. Оптопара SMD. Это я зря. У нее пины расположены с точностью до наоборот по сравнению с тем, как надо. В результате — две перемычки. Расположена она как раз между ними.

we.easyelectronics.ru

Микросхема bp2832a схема включения

Светодиоды – наиболее оптимальный источник освещения. Они экономичны, долговечны, их спектр наиболее близок к естественному свету, поэтому наиболее комфортен для человека. Повсеместному распространению их препятствует лишь достаточно высокая стоимость, но даже при этом за время эксплуатации они окупятся многократно.

Иногда они выходят из строя раньше окончания эксплуатационного периода. Ну, не предусмотрел производитель, что напряжение в сети будет прыгать сильнее курса евро на валютной бирже. Никому не придёт в голову ремонтировать сгоревшую лампочку накаливания. Да и ремонт энергосберегающей лампы по стоимости будет часто сопоставим с покупкой нового экземпляра, поскольку большая часть её стоимости именно блок управления.


А вот выбрасывать перегоревшую светодиодную лампу однозначно не стоит. Электронные компоненты платы питания стоят значительно дешевле самих светодиодов, которые «ломаются» крайне редко.

Причины выхода из строя светодиодной лампы

При перепаде напряжения чаще всего сгорает микросхема – драйвер питания. Выход из строя диодного моста либо сглаживающего конденсатора скорее казуистика.

В промышленных лампах чаще всего в качестве высоковольтного драйвера питания используют микросхему bp2831. Её задача – обеспечить стабильное напряжение, подаваемое на светодиоды.

Вот классическая схема питания для таких ламп. Понятно, что номинал радиодеталей может незначительно различаться, но общий принцип схемы будет одинаковым.

Назначение управляющих выводов:

VCC – положительный полюс питания;
GND – земля;
ROVP – ограничение напряжение;
CS – ограничение тока;
DRAIN – выход диммированного сигнала.

Эта микросхема представляет собой ШИМ-контроллер, управляющий сигнал, которого коммутируется через мощный мосфетовский полевой транзистор.

Вот так она выглядит на плате

Размещение bp2831 на плате

Аналоги bp2831a

Существует несколько распространённых микросхем для создания драйверов питания светодиодов, например bp3122, bp2832, bp2833. Следует отметить, что принцип работы у всех вариантов одинаковый, есть лишь небольшие различия в подключениях вывода.

Схема включения bp3122

Схема включения bp2831

Схема включения bp2832a

Схема включения bp2833

Различаются эти микросхемы лишь мощностью выходного каскада.

Как подобрать нужную микросхему для драйвера питания?

Часто бывает, что при перегреве микросхемы маркировка на ней выгорает. Тогда потребуется произвести расчёт приблизительной мощности устройства.

Определяем мощность лампы.

Вариант 1. Смотрим маркировку на корпусе лапы в районе цоколя. Если она стёрлась, а в люстре несколько таких лампочек, скорее всего они одинаковой мощности. В том случае, когда ни на одной лампе не удалось обнаружить маркировку, сравните их яркость с обыкновенными лампами накаливания. Мощность светодиодной лампы приблизительно в пять раз меньше мощности аналога с нитью накаливания.

Вариант 2. Считаем количество светодиодов. Если их очень много – это cmd3528 с напряжением питания 3,3В и силой тока 20мА. Около 20 небольших — cmd 5050 на 3,3В и 60мА, крупные светодиоды — cmd5730 на 3,3В и 0,15А.

Соответственно мощность лампы = количество светодиодов * 3,3В * силу тока одного светодиода.

Светодиоды могут иметь последовательное соединение, либо несколько параллельных цепочек.

Внимательно осмотрите монтажную плату. Если на ней последовательно соединено по 22 элемента, напряжение питания цепочки – 72В, когда по 11 – 36В.

Соответственно, сила тока в цепи – номинальный ток диода * количество параллельных цепочек.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

ШИМ, DC-DC аналоги и замена с переделкой и без. — Систематизированная полезная информация

ШИМ, DC-DC аналоги и замена с переделкой и без. — Систематизированная полезная информация — KenotronTVJump to content

PVV61    96

  • Общительный
  • Участники
  • 96
  • 139 posts
  • Город : Казань
  • Род занятий: ремонт TV и мониторов
  • Программатор: SUPERPRO 500P
  • Осциллограф: C1-73

HOOLIGAN    41

  • Сама Доброта
  • Участники
  • 41
  • 104 posts
  • Город : Краснодар
  • Род занятий: Телемастер
  • Программатор: Чиппрог
  • Осциллограф: Oscill

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

LiVan    837

  • Администратор
  • Administrators
  • 837
  • 4,994 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H
  • Осциллограф: нет

kenotrontv.ru

alexxlab

leave a Comment