Содержание

Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.


Для чего нужна защита двигателя?

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

Защита двигателя имеет три уровня:

Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.



Возможные условия отказа двигателя

Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

• Низкое качество электроснабжения:

• Высокое напряжение

• Пониженное напряжение

• Несбалансированное напряжение/ ток (скачки)

• Изменение частоты

• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

• Постепенное повышение температуры и выход её за допустимый предел:

• недостаточное охлаждение

• высокая температура окружающей среды

• пониженное атмосферное давление (работа на большой высоте над уровнем моря)

• высокая температура рабочей жидкости

• слишком большая вязкость рабочей жидкости

• частые включения/отключения электродвигателя

• слишком большой момент инерции нагрузки (свой для каждого насоса)

• Резкое повышение температуры:

• блокировка ротора

• обрыв фазы

Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.



Плавкий предохранительный выключатель

Плавкий предохранительный выключатель – это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.

Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.

Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем – пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.

Плавкие предохранители быстрого срабатывания

Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.

Плавкие предохранители с задержкой срабатывания

Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.

Время срабатывания плавкого предохранителя

Время срабатывания плавкого предохранителя – это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока – это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.



В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.

Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.

Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.


Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя – он просто устанавливается в исходное положение.



Различают два вида автоматических выключателей: тепловые и магнитные.

Тепловые автоматические выключатели

Тепловые автоматические выключатели – это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

Магнитные автоматические выключатели

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.



Рабочий диапазон автоматического выключателя

Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.


Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.



Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 – самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.



Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.


Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.



Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:

• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса

• Диагностирует возникшие неисправности

• Позволяет выполнять проверку работы реле во время техобслуживания

• Контролирует температуру и наличие вибрации в подшипниках

Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.

Например, электродвигатель может быть защищён от:

• Перегрузки

• Блокировки ротора

• Заклинивания

• Частых повторных пусков

• Разомкнутой фазы

• Замыкания на массу

• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)

• Малого тока

• Предупреждающего сигнала о перегрузке


Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

Пример вычисления

Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.



Данные отображаются в фирменной табличке, какпоказано в иллюстрации.



Вычисления для 60 Гц



Коэффициент усиления напряжения определяется следующими уравнениями:



Расчет фактического тока полной нагрузки (I):



(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)



(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

I для «треугольника»:



I для «звезды»:



Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.



Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.

Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA – service factor amps), который, как правило, указывается в фирменной табличке.


Внутренняя защита, встраиваемая в обмотки или клеммную коробку



Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.

• При высокой температуре окружающей среды.

• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.

• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP – аббревиатура «thermal protection» – тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)

• Число уровней и тип действия (2-я цифра)

• Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.



Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

1

ТР 112

2

ТР 121

2 уровня при аварийном сигнале и отключении

1

ТР 122

2

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

1

ТР 212

2

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

1

2

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении

1

2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

 

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.



Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.



Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке – маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.



Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации – если он нормально разомкнут, или термостат может обесточивать электродвигатель – если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.



Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.



Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик – примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).



Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях – два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле – усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.


Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.



Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.



Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты – это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.





В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.



Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх – по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, – происходит обесточивание контрольного реле.


Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.



По сравнению с PTO терморезисторы имеют следующие преимущества:

• Более быстрое срабатывание благодаря меньшему объёму и массе

• Лучше контакт с обмоткой электродвигателя

• Датчики устанавливаются на каждой фазе

• Обеспечивают защиту при блокировке ротора


Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111



Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211



Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

www.eti.su

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на

деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (

95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в

ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле

КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Удачи!

sesaga.ru

принцип действия, особенности и виды

Защита электродвигателя от перегрузки на сегодняшний день является одной из основных задач, которую нужно решить, чтобы успешно эксплуатировать это устройство. Такие типы двигателей используются достаточно широко, а потому было изобретено и множество способов оградить их от различных негативных эффектов.

Уровни защиты

Существует большое разнообразие устройств для защиты данного оборудования, однако, все их можно разделить на уровни.

  • Внешний уровень защиты от короткого замыкания. Чаще всего здесь используется различного типа реле. Данные приборы и уровень защиты находятся на официальном уровне. Другими словами, это обязательный предмет защиты, который должен быть установлен, согласно правилам безопасности на территории РФ.
  • Реле защиты электродвигателя от перегрузок поможет избежать разнообразных критических повреждений в процессе работы, а также возможных повреждений. Эти приборы также принадлежат к внешнему уровню защиты.
  • Внутренний слой защиты предотвращает возможный перегрев деталей двигателя. Для этого иногда используются внешние выключатели, а иногда реле перегрузки.

Причины сбоев оборудования

На сегодняшний день существует большое разнообразие проблем, из-за которых может быть нарушена работоспособность электрического двигателя, если он не будет оборудован приборами для защиты.

  1. Низкий уровень электрического напряжения или же, наоборот, слишком высокий уровень подачи могут стать причиной выхода из строя.
  2. Возможна поломка вследствие того, что слишком быстро и часто будет изменяться частота подачи тока.
  3. Неверная установка агрегата или же его элементов также может быть опасна.
  4. Повышение температуры до критического значения или выше.
  5. Слишком слабое охлаждение тоже приводит к поломкам.
  6. Сильно негативно сказывается повышенная температура окружающей среды.
  7. Немногие знают, то пониженное давление или же установка двигателя намного выше уровня моря, что вызывает пониженное давление, также имеют негативное влияние.
  8. Естественно, что необходима защита электродвигателя от перегрузок, которые могут возникать, из-за сбоев в электросети.
  9. Частое включение и выключение прибора – это негативный дефект, который также нуждается в устранении при помощи приборов защиты.

Плавкие предохранители

Полное название средства защиты – плавкий предохранительный выключатель. В данном устройстве объединяется и автоматический выключатель и плавкий предохранитель, которые расположены в одном корпусе. При помощи выключателя можно также размыкать или замыкать цепь вручную. Плавкий же предохранитель – это защита электродвигателя от перегрузки по току.

Стоит отметить, что конструкция аварийного выключателя предусматривает наличие специального кожуха, который защищает персонал от случайного контакта с клеммами устройства, а также сами контакты от окисления.

Что касается плавкого предохранителя, то это приспособление должно быть способно отличать перегрузку по току от возникновения в цепи короткого замыкания. Это очень важно, так как кратковременная перегрузка по току вполне допускается. Однако, токовая защита электродвигателя от перегрузки должна сработать немедленно, если этот параметр будет продолжать расти.

Предохранители от КЗ

Существует разновидность плавкого предохранителя, которая предназначена для защиты агрегата от короткого замыкания (КЗ). Однако, здесь стоит отметить, что плавкий предохранитель быстрого срабатывания может выйти из строя, если при запуске аппарата будет происходить кратковременная перегрузка, то есть увеличение пускового тока. По этой причине такие приборы обычно используются в тех сетях, где такой скачок невозможен. Что касается самого средства защиты электродвигателя от перегрузки, то предохранитель быстрого срабатывания может выдержать ток, который будет превышать его номинальный на 500%, если перепад длится не более четверти секунды.

Предохранители с задержкой

Развитие технологий привело к тому, что удалось создать прибор для защиты и от перегрузки, и от короткого замыкания одновременно. Таким средством стал плавкий предохранитель с задержкой срабатывания. Особенность заключается в том, что он способен выдерживать 5-кратное увеличение тока, если оно длится не более 10 секунд. Возможно даже более сильное увеличение параметра, но на более короткий срок, прежде чем предохранитель сработает. Однако, чаще всего интервала в 10 секунд хватает и для запуска двигателя, и для того, чтобы предохранитель не сработал. Защита однофазного электродвигателя от перегрузок, от КЗ, а также другого типа электродвигателя таким прибором считается одной из наиболее надежных.

Здесь также стоит отметить, как определяется время срабатывания этого устройства защиты. Время срабатывания именно плавкого предохранителя – это отрезок, за который плавится его плавкий элемент (проволока). Когда проволока полностью расплавляется, цепь размыкается. Если говорить о зависимости времени отключения от перегрузки именно для таких типов средств защиты, то они обратно пропорциональны. Другими словами, токовая защита электродвигателя от перегрузок работает так – чем выше сила тока, тем быстрее плавится проволока, а значит сокращается время разъединения цепи.

Магнитные и тепловые приборы

На сегодняшний день автоматические приборы теплового типа считаются наиболее надежными и экономичными приборами для защиты электродвигателя от тепловых перегрузок. Эти устройства также способны выдерживать большие амплитуды тока, которые могут возникнуть во время пуска прибора. Кроме того, тепловые предохранители защищают от таких неполадок как блокировка ротора, к примеру.

Защита асинхронных электродвигателей от перегрузки может осуществляться при помощи магнитных выключателей автоматического типа. Они отличаются высокой надежностью, точностью и экономичностью. Его особенность заключается в том, что на предел его срабатывания по температуре не влияет изменение температуры окружающей среды, что в некоторых условиях работы очень важно. Также они отличаются от тепловых тем, у них более точно определено время срабатывания.

Реле перегрузки

Функции данного устройства достаточно просты, однако, и довольно важны.

  1. Такой прибор способен выдержать кратковременный перепад по току во время запуска двигателя без разрыва цепи, что наиболее важно.
  2. Размыкание цепи происходит в том случае, если ток увеличивается до того значения, когда возникает угроза поломки защищаемого прибора.
  3. После того как перегрузка будет устранена, реле может вернуться в исходное положение автоматически или же может быть возвращено вручную.

Стоит отметить, что токовая защита электродвигателя от перегрузок при помощи реле осуществляется в соответствии с характеристикой срабатывания. Другими словами – в зависимости от класса прибора. Наиболее распространенными являются классы 10, 20 и 30. Первая группа – это реле, которые срабатывают в случае наличия перегрузки, в течение 10 секунд и, если числовое значение тока превышает 600% от номинального. Вторая группа срабатывает спустя 20 секунд и менее, третья, соответственно, спустя 30 секунд и менее.

Плавкие средства защиты и реле

В настоящее время довольно часто сочетают два средства защиты – плавкие предохранители и реле. Такая комбинация работает следующим образом. Плавкий предохранитель должен защищать двигатель от короткого замыкания, а потому у него должна быть достаточно большая емкость. Из-за этого он не может защитить устройство от более низких, но все же опасных токов. Именно для устранения этого недостатка в систему вводятся реле, которые реагируют на более слабые, но все же опасные колебания тока. Наиболее важно в данном случае настроить плавкий предохранитель таким образом, чтобы он сработал раньше, чем возникнут повреждения какого-либо элемента.

Наружные средства защиты

В настоящее время довольно часто используются усовершенствованные системы наружной защиты электродвигателя. Они могут защитить прибор от перенапряжения, перекоса фаз, способны устранять вибрации или же ограничивать число включений и выключений. К тому же у таких средств имеется встроенный тепловой датчик, который помогает контролировать температуру подшипников, статора. Еще одна особенность такого прибора в том, что он способен воспринимать и обрабатывать цифровой сигнал, который создает температурный датчик.

Основное предназначение наружных средств защиты – это сохранение работоспособности трехфазных двигателей. Помимо того, что такое оборудование способно защитить двигатель во время сбоя в электрической сети, оно также обладает еще несколькими преимуществами.

  • Наружное устройство может сформировать и подать сигнал о неисправности еще до того, как она нарушит работоспособность машины.
  • Проводит диагностику тех проблем, которые уже возникли.
  • Дает возможность провести проверку реле во время технического обслуживания.

Исходя из всего вышесказанного, можно утверждать, что устройств для защиты электродвигателя от перегрузки существует большое разнообразие. Кроме того, каждое из них способно защитить прибор от определенных негативных воздействий, а потому целесообразно их комбинировать.

fb.ru

Тепловая защита электродвигателя – Всё о электрике в доме

Виды и аппараты защит электродвигателей

Аппараты максимальной токовой защиты. При работе ЭП может произойти замыкание электрических цепей между собой на землю (корпус), а также увеличение тока в силовых цепях свыше допустимого предела, вызванное стопорением движения исполнительного органа рабочей машины, обрывом одной из фаз питающего напряжения, резким снижением тока возбужден ДПТ. Для защиты ЭП и питающей сети от появляющихся в этих случаях недопустимо больших токов (сверхтоков) предусматривается максимальная токовая защита, которая может реализовываться различными средствами — с помощью плавких предохранителей, реле максимального тока и автоматических выключателей.

Плавкие предохранители (FU) — включаются в каждую линию (фазу) питающей сети между выключателем напряжения сети и контактами линейного контактора КМ, а также в цепи управления. На рисунке 2 показаны соответственно схемы защиты предохранителями АД, ДПТ и цепей управления.

Рисунок 2 – Защита цепей предохранителями

Основными элементами предохранителя являются плавкая вставка и дугогасительное устройство. Выбор плавкой вставки предохранителей производится по току, который рассчитывается таким образом, чтобы она не перегорала от пускового тока двигателя.

Для защиты электрических цепей ЭП при напряжении до 1000 В применяются следующие типы предохранителей: трубчатые без наполнителя серии ПР2; быстродействующие серии ПНБ-5; с высокой разрывной способностью серии ПП 31; трубчатые разборные с закрытыми патронами и наполнителем серии ПН 2; резьбовые серии ПРС. Плавкие вставки этих предохранителей калибруются на токи от 6 до 1000 А.

Реле максимального тока используются в основном в ЭП средней и большой мощности. Катушки этих реле FA1 и FA2 включаются в две фазы трехфазных двигателей переменного тока и в один или два полюса ДПТ между выключателем QS и контактами линейного контактора КМ. Размыкающие контакты этих реле включаются также в цепь катушки линейного контактора КМ. При возникновении сверхтоков в контролируемых цепях, превышающих токи срабатывания (уставки) реле FA1 и FA2, контакты этих реле размыкаются и силовые контакты линейного контактора КМ отключают двигатель от питающей сети (рис.3).

Уставки реле максимального тока должны выбираться таким образом, чтобы не происходило отключения двигателей при их пуске или других переходных процессах, т. е. когда токи в силовых цепях в несколько раз превышают номинальный уровень.

В качестве реле максимального тока в ЭП применяются реле мгновенного действия серии РЭВ 570 для цепей постоянного тока от 0,6 до 1200 А и серии РЭВ 571Т для цепей переменного тока от 0,6 до 630 А. Время их срабатывания порядка 0,05 с. В схемах управления применяются также реле серий РЭ 70, РЭВ 830, РЭВ 302 и др.

Автоматические воздушные выключатели (автоматы — QF). Эти комплексные многоцелевые аппараты обеспечивают ручное включение и отключение двигателей, их защиту от сверхтоков, перегрузок и снижения питающего напряжения. Для обеспечения выполнения этих функций автомат имеет контактную систему, замыкание и размыкание которой осуществляется вручную с помощью рукоятки или кнопки, максимальное токовое реле и тепловое токовое реле.

Важной частью автомата является механизм свободного сцепления,

который обеспечивает его отключение при поступлении управляющих или защитных воздействий, например при протекании токов перегрузки, коротком замыкании, снижении напряжения сети, а также при необходимости дистанционного отключения автомата.

Упрощенное устройство автомата показано на рисунке 4. Рабочий ток нагрузки протекает через контакт 1 автомата, нагреватель теплового реле 6 и катушку 9 реле максимального тока. При коротком замыкании в контролируемой цепи сердечник 10 реле максимального тока втягивается в катушку 9 и через толкатель 8 воздействует на рычаг 5 механизма свободного расцепления. Последний поворачивается по часовой стрелке и приподнимает защелку 4. При этом освобождается рычаг 3 и, воздействуя на пружину 2, размыкает контакты 1 автомата.

Рисунок 4 – Схема автоматического выключателя (а) и его условное графическое и буквенное обозначение (б)

Аналогично происходит отключение автомата при перегрузке цепи, когда ток в ней больше номинального (расчетного), но меньше тока короткого замыкания. В этом случае ток, проходя по нагревателю 6 теплового реле, вызывает нагрев биметаллической пластины 7, в результате чего свободный конец этой пластины поднимается вверх и через рычаг 5 открывает защелку 4, вызывая этим отключение контактов автомата.

Часто в автоматах применяют тепловые расцепители без нагревателя, в этом случае контролируемый ток пропускается непосредственно через биметаллическую пластину. В маломощных автоматах такой расцепитель может выполнять также функции элемента максимальной токовой защиты.

Автоматические выключатели широко используются для коммутации и защиты силовых и маломощных цепей ЭП всех видов.

Применяемые в ЭП автоматические выключатели серий АП 50, АК 63, А 3000, А 3700, АЕ 2000, ВА, ВАБ, «Электрон» различаются между собой числом контактов (полюсов), уровнями номинальных тока и напряжения, набором и исполнением реализуемых защит, отключающей способностью, быстродействием. Диапазон их номинальных токов составляет 10. 10 000 А, а предельных коммутируемых токов 0,3. 100 кА. Время включения различных автоматов находится в пределах от 0,02 до 0,7 с.

Нулевая защита. При значительном снижении напряжения сети или его исчезновении эта защита обеспечивает отключение двигателей и предотвращает самопроизвольное их включение (самозапуск) после восстановления напряжения.

В тех случаях, когда двигатели управляются кнопками контакторов или магнитных пускателей, нулевая защита осуществляется самими этими аппаратами без применения дополнительных средств. Например, если в схемах исчезло или сильно понизилось напряжение сети, катушка линейного контактора КМ потеряет питание и он отключит двигатель от сети. При восстановлении напряжения включение двигателя возможно только после нажатия на кнопку управления SB2.

Тепловая защита отключает двигатель от источника питания, если, вследствие протекания по его цепям повышенных токов происходит значительный нагрев его обмоток. Такая перегрузка возникает, например, при обрыве одной из фаз трехфазного АД или СД.

Тепловая защита двигателей осуществляется с помощью тепловых, максимальных токовых реле и автоматических выключателей. Тепловые реле (КК) включаются в две-три фазы трехфазных двигателей непосредственно или через трансформаторы тока (рисунок 5). Для защиты ДПТ тепловые реле включаются в один или два полюса цепи их питания. Размыкающие контакты тепловых реле включаются в цепи катушек главных (линейных) контакторов или в цепь защитного реле.

Действие теплового реле основано на эффекте изгибания биметаллической пластинки при нагревании из-за различных температурных коэффициентов линейного расширения образующих ее металлов.

Рисунок 5 – Включение тепловых реле в электрические цепи

В ЭП применяются электротепловые двухполюсные реле серий ТРН на номинальные токи от 0,32 до 40 А, однополюсные реле серий ТРТП на токи от 1,75 до 550 А и трехполюсные реле серий РТЛ на токи от 0,17 до 200 А. Эти реле имеют регулируемую уставку тепловой защиты; при токе 1,2Iном время их срабатывания 20 мин.

Тепловая защита двигателей может осуществляться также автоматическими выключателями и магнитными пускателями, если они имеют встроенные тепловые расцепители.

При повторно-кратковременных режимах работы ЭП, когда процессы нагрева реле и двигателя различны, защита двигателей от перегрузок осуществляется с помощью максимальных токовых реле FA1 и FA2. Токи уставок этих реле выбираются на 20. 30% выше номинального тока двигателя. Так как, ток уставки реле в этом случае ниже пускового тока, то при пуске двигателя его контакты шунтируются контактами реле времени, имеющего выдержку времени несколько большую времени пуска двигателя.

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Инструкция по выбору теплового реле для защиты электродвигателя

22.06.2016 нет комментариев 19 005 просмотров

Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле. с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

Нравится( 0 ) Не нравится( 0 )

Аварийные ситуации в работе асинхронного двигателя и методы защиты

Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго. Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы. Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.

Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:

  • Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
  • Перегрузка, в результате которой температура всего движка увеличивается.
  • Проблемы с напряжением, которое либо уменьшается, либо пропадает.
  • Исчезновение напряжения на одной из фаз.

В схемах защиты используются плавкие предохранители. реле и магнитные пускатели с автоматическими выключателями. Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя. Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.

Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:

  • предназначении привода, в котором работает асинхронный двигатель;
  • электромеханических параметрах привода;
  • условиях окружающей среды;
  • возможности обслуживания персоналом.
  • Главными качествами защиты должна быть простота в эксплуатации и надёжность.

Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах. При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения. Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.

Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).

  • Место установки – перед зажимами движка на ответвлении к нему.
  • Надёжное отключение при коротких замыканиях на его зажимах.

Точки на изображении:

  • К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
  • К2 – двухфазное замыкание;
  • К3 – трёхфазное короткое замыкание.

Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя. Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению. В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Тепловая защита

Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания. Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя. Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.

Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.

Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции. При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока. Существуют модели магнитных пускателей со встроенными в них тепловыми реле.

Основными электрическими параметрами являются

  • номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
  • Номинальный ток, при котором реле работает длительно и не срабатывает при этом.

Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.

Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла. Такой тепловой сенсор располагается на самом движке в том или ином месте. Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.

Понижение напряжения и пропадание фазы

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН .

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

Источники: http://studopedia.ru/2_20958_vidi-i-apparati-zashchit-elektrodvigateley.html, http://samelectrik.ru/instrukciya-po-vyboru-teplovogo-rele-dlya-zashhity-elektrodvigatelya.html, http://podvi.ru/elektrodvigatel/zashhita-asinxronnogo-dvigatelya.html

electricremont.ru

Виды защиты для электродвигателей

Надежная и бесперебойная работа двигателя обеспе­чивается в первую очередь правильным выбором его номинальной мощности, соблюдением необходимых тре­бований при проектировании электрической схемы, монтаже и эксплуатации электропривода. Однако даже для правильно спроектированных и эксплуатируемых электроприводов всегда остается опас­ность возникновения аварийных и ненормальных для двигателя режимов. На этот случай должны быть предусмотрены средства для ограничения развития ава­рий и предотвращения преждевременного выхода оборудования из строя.

Схема подключения трехфазного асинхронного электродвигателя.

Главным и наиболее действенным средством являет­ся электрическая защита двигателей, выпол­няемая в соответствии с Правилами устройства электро­установок.

В зависимости от характера возможных поврежде­ний и ненормальных режимов работы, различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей.

Максимально-токовая защита, именуемая в дальнейшем для краткости максимальной защитой. Аппараты, осуществляющие максимальную защиту (плавкие предохранители, электромагнитные реле, авто­матические выключатели с электромагнитным расцепителем), практически мгновенно, т. е. без выдержки вре­мени, отключает двигатель от сети при появлении в главной цепи или в цепи управления токов короткого замыкания или ненормально больших толчков тока.

Защита от перегрузки, или тепловая защита, предохраняет двигатель от недопустимого перегрева при сравнительно небольших по величине, но продолжительных перегрузках. Аппараты тепловой за­щиты (тепловые реле, автоматические выключатели с тепловым расцепителем) при возникновении перегруз­ки отключают двигатель с определенной выдержкой вре­мени, тем большей, чем меньше перегрузка.

Схема тепловой защиты.

Защита от работы на двух фазах предохраняет двигатель от недопустимого перегрева, который может наступить вследствие обрыва провода или перегорания предохранителя в одной из фаз глав­ной цепи. Защита действует на отключение двигателя. В качестве аппаратов защиты применяются как тепло­вые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Защита минимального напряжения (нулевая защита) выполняется с помощью одного или нескольких аппаратов,  действует на отключение дви­гателя при снижении напряжения сети ниже установленного значения, предотвращая возможный перегрев двигателя и опасность его «опрокидывания», т. е. оста­новки вследствие снижения электрического момента. Нулевая защита предохраняет также двигатель от само­произвольного включения после перерыва питания.

Кроме того, существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряже­ния, однофазных замыканий на землю в сетях с изоли­рованной нейтралью, увеличения скорости вращения привода и т. п.).

Аппараты электрической защиты могут осуще­ствлять один или сразу несколько видов защиты. Так, некоторые автоматические выключатели с комбиниро­ванным расцепителем обеспечивают максимальную за­щиту, защиту от перегрузки и от работы на двух фазах.

Таблица выбора теплового реле.

Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены после каждого срабатыва­ния. Другие, такие как электромагнитные и тепловые реле, – аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным воз­вратом.

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощ­ности и условий работы. Большую пользу могут при­нести анализ данных по аварийности электрооборудова­ния в цехе, на строительной площадке, в мастерской и т. п. определение наиболее часто повторяющихся на­рушений нормальной работы двигателей и технологиче­ского оборудования.

Существенное значение имеют правильный выбор и настройка аппаратов защиты. Например, иногда наблю­дается повышенный выход из строя двигателей из-за работы на двух фазах вследствие сгорания плавкой вставки в одной фазе. Но во многих случаях сгорание вставки происходит не в результате однофазного корот­кого замыкания (пробоя на корпус), а вызвано непра­вильным выбором вставок, установкой в разных фазах случайно найденных предохранителей с разными токами расплавления вставок.

http://fazaa.ru/www.youtube.com/watch?v=fRilXt_Ciik

Опыт многих предприятий пока­зывает, что при высоком качестве ремонта двигателей, тщательном выполнении монтажа, надлежащем уходе за контактами пускателей и контакторов и правильном выборе плавких вставок работа двигателей на двух фа­зах практически исключается и установки специальной защиты не требуется.

Поделитесь полезной статьей:

Top

fazaa.ru

Электрический двигатель: комплексная релейная защита

Практически нет в эксплуатации техники, где не использовался бы электродвигатель. Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень же эффективности защиты электромотора, определяется схемными решениями внедрения реле и датчиков контроля.

Содержимое публикации

Схема комплексной защиты двигателя

Существуют различные типы защитных реле, предназначенных исключить сбои двигателя при работе. Этими реле определяется рабочие состояние мотора, выходящее за рамки нормы, что в конечном итоге приводит к срабатыванию автоматического выключателя.

Комплексная защита двигателя обеспечивает контроль:

  • нарушений в обмотках и связанных цепях;
  • чрезмерной перегрузки и короткого замыкания;
  • дисбаланса трёхфазного и однофазного напряжения;
  • изменения порядка чередования фаз и коммутационных напряжений.

Основная характеристика защитных реле двигателя — это зависимость уменьшения времени срабатывания от увеличения магнитуды тока повреждения.

Устройства из серии приборов, гарантирующих целостность моторов при работе электрических двигателей в тяжелых эксплуатационных условиях

Рассмотрим различные варианты защиты, применяемые к традиционным электрическим двигателям, находящимся в эксплуатации.

Перечень защит и предназначение

Список часто применяемых защитных решений состоит из шести реализуемых функций:

  1. Перегрузка по току.
  2. Перегрев статорных обмоток.
  3. Перегрев ротора.
  4. Пониженное напряжение.
  5. Дисбаланс и пофазный сбой.
  6. Реверс фаз.

Прежде чем подробнее рассмотреть отмеченные схемы защиты, логичным видится разделить двигатели на две группы эксплуатационного статуса – значимые и малозначимые.

Перегрузка двигателя по току

Это основной функционал защиты, направленный на предотвращение короткого замыкания обмоток статора. Здесь предохранители и элементы прямого действия используются для защиты статорных обмоток двигателя.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.

Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки по току либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.

Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.

Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и  поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Рекомендуется применять реле защиты двигателя, чувствительное  на отказ обмотки статора. Например, на межфазное замыкание или короткое замыкание на землю.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.

Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Традиционная защита асинхронных двигателей

Схема защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.

Схема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

Как работает функционал защиты

Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

  • предохранителями с высокой отключающей способностью,
  • биметаллическими реле и
  • реле напряжения.

Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.

Структура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

Защитные функции токовых реле

Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

  • катушка тока;
  • один или несколько нормально разомкнутых контактов.

Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.

Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

Защитные функции тепловых реле

Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное механическое заклинивание, в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

Теоретический минимум по защите электродвигателей

zetsila.ru

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Термисторная (позисторная) защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя.  Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

 

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) – полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

 

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 – открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ – реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 – 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

 

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом – РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя  на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2 или T1-T3
  • напряжений питания    230V AC
  • максимальный коммутируемый ток 250V, 5A AC (1 перекидной)

Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)

  

  • контролируемая величина PTC (контр. температуры двигателя  на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
  • диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
  • напряжений питания    230V AC
  • максимальный коммутируемый ток 250V, 5A AC (2 перекидных)

Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
  • Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
  • Отключение аварийного режима PTC < 1,8 кΩ + RESET
  • Номинальный ток 8 A (15А – пиковый ток), 1 перекидной контакт

Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, “METZ CONNECT” (Германия)

  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее  устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 – 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

  • 1 нормально разомкнутый контакт, без памяти отказов
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

vserele.ru

alexxlab

leave a Comment